Patents by Inventor Bostjan Genorio

Bostjan Genorio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10181370
    Abstract: A wellbore fluid may include an oleaginous continuous phase, one or more magnetic carbon nanoribbons, and at least one weighting agent. A method of performing wellbore operations may include circulating a wellbore fluid comprising a magnetic carbon nanoribbon composition and a base fluid through a wellbore. A method for electrical logging of a subterranean well may include placing into the subterranean well a logging medium, wherein the logging medium comprises a non-aqueous fluid and one or more magnetic carbon nanoribbons, wherein the one or more magnetic carbon nanoribbons are present in a concentration so as to permit the electrical logging of the subterranean well; and acquiring an electrical log of the subterranean well.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: January 15, 2019
    Assignees: William Marsh Rice University, M-I L.L.C.
    Inventors: James M. Tour, Bostjan Genorio, Wei Lu, Katherine Price Hoelscher, James Friedheim, Arvind D. Patel
  • Publication number: 20170081441
    Abstract: Embodiments of the present invention provide methods of preparing functionalized graphene nanoribbons by (1) exposing a plurality of carbon nanotubes to an alkali metal source in the presence of an aprotic solvent, wherein the exposing opens the carbon nanotubes; and (2) exposing the opened carbon nanotubes to an electrophile to form functionalized graphene nanoribbons. Such methods may also include a step of exposing the opened carbon nanotubes to a protic solvent in order to quench any reactive species on the opened carbon nanotubes. Further embodiments of the present invention pertain to graphene nanoribbons formed by the methods of the present invention. Additional embodiments of the present invention pertain to nanocomposites and fibers containing the aforementioned graphene nanoribbons.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 23, 2017
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Wei Lu, Bostjan Genorio
  • Patent number: 9493355
    Abstract: The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 15, 2016
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Wei Lu, Bostjan Genorio
  • Patent number: 9449743
    Abstract: Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 20, 2016
    Assignees: WILLIAM MARSH RICE UNIVERSITY, M-I, L.L.C.
    Inventors: James M. Tour, Bostjan Genorio, Wei Lu, Brandi Katherine Price-Hoelscher
  • Publication number: 20150108391
    Abstract: Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized.
    Type: Application
    Filed: January 28, 2013
    Publication date: April 23, 2015
    Applicants: M-I L.L.C., William Marsh Rice University
    Inventors: James M. Tour, Bostjan Genorio, Wei Lu, Brandi Katherine Price-Hoelscher
  • Publication number: 20150057417
    Abstract: The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 26, 2015
    Applicant: William Marsh Rice Universtiy
    Inventors: James M. Tour, Wei Lu, Bostjan Genorio
  • Publication number: 20140367091
    Abstract: A wellbore fluid may include an oleaginous continuous phase, one or more magnetic carbon nanoribbons, and at least one weighting agent. A method of performing wellbore operations may include circulating a wellbore fluid comprising a magnetic carbon nanoribbon composition and a base fluid through a wellbore. A method for electrical logging of a subterranean well may include placing into the subterranean well a logging medium, wherein the logging medium comprises a non-aqueous fluid and one or more magnetic carbon nanoribbons, wherein the one or more magnetic carbon nanoribbons are present in a concentration so as to permit the electrical logging of the subterranean well; and acquiring an electrical log of the subterranean well.
    Type: Application
    Filed: January 28, 2013
    Publication date: December 18, 2014
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Bostjan Genorio, Wei Lu, Katherine Price Hoelscher, James Friedheim, Arvind D. Patel
  • Publication number: 20130004885
    Abstract: A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 3, 2013
    Inventors: Dusan Strmcnik, Bostjan Genorio, Vojislav Stamenkovic, Nenad Markovic