Patents by Inventor Botond Szatmary

Botond Szatmary has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130325766
    Abstract: Apparatus and methods for heterosynaptic plasticity in a spiking neural network having multiple neurons configured to process sensory input. In one exemplary approach, a heterosynaptic plasticity mechanism is configured to select alternate plasticity rules when performing neuronal updates. The selection mechanism is adapted based on recent post-synaptic activity of neighboring neurons. When neighbor activity is low, a regular STDP update rule is effectuated. When neighbor activity is high, an alternate STDP update rule, configured to reduce probability of post-synaptic spike generation by the neuron associated with the update, is used. The heterosynaptic mechanism impedes that neuron to respond to (or learn) features within the sensory input that have been detected by neighboring neurons, thereby forcing the neuron to learn a different feature or feature set.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Inventors: CSABA PETRE, BOTOND SZATMARY
  • Publication number: 20130325777
    Abstract: Apparatus and methods for heterosynaptic plasticity in a spiking neural network having multiple neurons configured to process sensory input. In one exemplary approach, a heterosynaptic plasticity mechanism is configured to select alternate plasticity rules when performing neuronal updates. The selection mechanism is adapted based on recent post-synaptic activity of neighboring neurons. When neighbor activity is low, a regular STDP update rule is effectuated. When neighbor activity is high, an alternate STDP update rule, configured to reduce probability of post-synaptic spike generation by the neuron associated with the update, is used. The heterosynaptic mechanism impedes that neuron to respond to (or learn) features within the sensory input that have been detected by neighboring neurons, thereby forcing the neuron to learn a different feature or feature set.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Inventors: Csaba Petre, Botond Szatmary
  • Publication number: 20130304447
    Abstract: Working memory (WM) is part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime memories. As described, large memory content and WM functionality emerge spontaneously if the spike-timing nature of neuronal processing is taken into account. The memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns. Using computer-implemented simulations, associative synaptic plasticity in the form of short-term STDP selects such polychronous neuronal groups (PNGs) into WM by temporarily strengthening the synapses of the selected PNGs.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 14, 2013
    Inventors: Botond Szatmáry, Eugene Izhikevich
  • Patent number: 8583286
    Abstract: A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 12, 2013
    Assignee: Neurosciences Research Foundation, Inc.
    Inventors: Jason G. Fleischer, Botond Szatmáry, Donald B. Hutson, Douglas A. Moore, James A. Snook, Gerald M. Edelman, Jeffrey L. Krichmar
  • Publication number: 20130297541
    Abstract: Apparatus and methods for feedback in a spiking neural network. In one approach, spiking neurons receive sensory stimulus and context signal that correspond to the same context. When the stimulus provides sufficient excitation, neurons generate response. Context connections are adjusted according to inverse spike-timing dependent plasticity. When the context signal precedes the post synaptic spike, context synaptic connections are depressed. Conversely, whenever the context signal follows the post synaptic spike, the connections are potentiated. The inverse STDP connection adjustment ensures precise control of feedback-induced firing, eliminates runaway positive feedback loops, enables self-stabilizing network operation. In another aspect of the invention, the connection adjustment methodology facilitates robust context switching when processing visual information. When a context (such an object) becomes intermittently absent, prior context connection potentiation enables firing for a period of time.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: FILIP PIEKNIEWSKI, EUGENE IZHIKEVICH, BOTOND SZATMARY, CSABA PETRE
  • Publication number: 20130297542
    Abstract: Apparatus and methods for feedback in a spiking neural network. In one approach, spiking neurons receive sensory stimulus and context signal that correspond to the same context. When the stimulus provides sufficient excitation, neurons generate response. Context connections are adjusted according to inverse spike-timing dependent plasticity. When the context signal precedes the post synaptic spike, context synaptic connections are depressed. Conversely, whenever the context signal follows the post synaptic spike, the connections are potentiated. The inverse STDP connection adjustment ensures precise control of feedback-induced firing, eliminates runaway positive feedback loops, enables self-stabilizing network operation. In another aspect of the invention, the connection adjustment methodology facilitates robust context switching when processing visual information. When a context (such an object) becomes intermittently absent, prior context connection potentiation enables firing for a period of time.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: FILIP PIEKNIEWSKI, EUGENE IZHIKEVICH, BOTOND SZATMARY, CSABA PETRE
  • Publication number: 20130297539
    Abstract: Apparatus and methods for feedback in a spiking neural network. In one approach, spiking neurons receive sensory stimulus and context signal that correspond to the same context. When the stimulus provides sufficient excitation, neurons generate response. Context connections are adjusted according to inverse spike-timing dependent plasticity. When the context signal precedes the post synaptic spike, context synaptic connections are depressed. Conversely, whenever the context signal follows the post synaptic spike, the connections are potentiated. The inverse STDP connection adjustment ensures precise control of feedback-induced firing, eliminates runaway positive feedback loops, enables self-stabilizing network operation. In another aspect of the invention, the connection adjustment methodology facilitates robust context switching when processing visual information. When a context (such an object) becomes intermittently absent, prior context connection potentiation enables firing for a period of time.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: Filip Piekniewski, Eugene Izhikevich, Botond Szatmary, Csaba Petre
  • Publication number: 20130251278
    Abstract: Systems and methods for processing image signals are described. One method comprises obtaining a generator signal based on an image signal and determining relative latencies associated with two or more pulses in a pulsed signal using a function of the generator signal that can comprise a logarithmic function. The function of the generator signal can be the absolute value of its argument. Information can be encoded in the pattern of relative latencies. Latencies can be determined using a scaling parameter that is calculated from a history of the image signal. The pulsed signal is typically received from a plurality of channels and the scaling parameter corresponds to at least one of the channels. The scaling parameter may be adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval.
    Type: Application
    Filed: May 15, 2013
    Publication date: September 26, 2013
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre
  • Publication number: 20130218821
    Abstract: Apparatus and methods for high-level neuromorphic network description (HLND) framework that may be configured to enable users to define neuromorphic network architectures using a unified and unambiguous representation that is both human-readable and machine-interpretable. The framework may be used to define nodes types, node-to-node connection types, instantiate node instances for different node types, and to generate instances of connection types between these nodes. To facilitate framework usage, the HLND format may provide the flexibility required by computational neuroscientists and, at the same time, provides a user-friendly interface for users with limited experience in modeling neurons. The HLND kernel may comprise an interface to Elementary Network Description (END) that is optimized for efficient representation of neuronal systems in hardware-independent manner and enables seamless translation of HLND model description into hardware instructions for execution by various processing modules.
    Type: Application
    Filed: March 15, 2012
    Publication date: August 22, 2013
    Inventors: Botond Szatmary, Eugene M. Izhikevich
  • Patent number: 8467623
    Abstract: Systems and methods for processing image signals are described. One method comprises obtaining a generator signal based on an image signal and determining relative latencies associated with two or more pulses in a pulsed signal using a function of the generator signal that can comprise a logarithmic function. The function of the generator signal can be the absolute value of its argument. Information can be encoded in the pattern of relative latencies. Latencies can be determined using a scaling parameter that is calculated from a history of the image signal. The pulsed signal is typically received from a plurality of channels and the scaling parameter corresponds to at least one of the channels. The scaling parameter may be adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: June 18, 2013
    Assignee: Brain Corporation
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre
  • Publication number: 20130073492
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The software and hardware engines are optimized to take into account short-term and long-term synaptic plasticity in the form of LTD, LTP, and STDP.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre, Filip Piekniewski, Jayram Moorkanikara Nageswaran
  • Publication number: 20130073500
    Abstract: Apparatus and methods for high-level neuromorphic network description (HLND) framework that may be configured to enable users to define neuromorphic network architectures using a unified and unambiguous representation that is both human-readable and machine-interpretable. The framework may be used to define nodes types, node-to-node connection types, instantiate node instances for different node types, and to generate instances of connection types between these nodes. To facilitate framework usage, the HLND format may provide the flexibility required by computational neuroscientists and, at the same time, provides a user-friendly interface for users with limited experience in modeling neurons. The HLND kernel may comprise an interface to Elementary Network Description (END) that is optimized for efficient representation of neuronal systems in hardware-independent manner and enables seamless translation of HLND model description into hardware instructions for execution by various processing modules.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 21, 2013
    Inventors: Botond Szatmary, Eugene Izhikevich
  • Publication number: 20130073495
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. Neuronal network and methods for operating neuronal networks comprise a plurality of units, where each unit has a memory and a plurality of doublets, each doublet being connected to a pair of the plurality of units. Execution of unit update rules for the plurality of units is order-independent and execution of doublet event rules for the plurality of doublets is order-independent.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre, Jayram Moorkanikara Nageswaran, Filip Piekniewski
  • Publication number: 20130073484
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. Methods for managing memory in a processing system are described whereby memory can be allocated among a plurality of elements and rules configured for each element such that the parallel execution of the spiking networks is most optimal.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre, Filip Piekniewski
  • Publication number: 20130073498
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The format is specifically tuned for neural systems and specialized neuromorphic hardware, thereby serving as a bridge between developers of brain models and neuromorphic hardware manufactures.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventors: Eugene M. Izhikevich, Csaba Petre, Filip Piekniewski, Botond Szatmary
  • Publication number: 20130073496
    Abstract: Apparatus and methods for high-level neuromorphic network description (HLND) using tags. The framework may be used to define nodes types, define node-to-node connection types, instantiate node instances for different node types, and/or generate instances of connection types between these nodes. The HLND format may be used to define nodes types, define node-to-node connection types, instantiate node instances for different node types, dynamically identify and/or select network subsets using tags, and/or generate instances of one or more connections between these nodes using such subsets. To facilitate the HLND operation and disambiguation, individual elements of the network (e.g., nodes, extensions, connections, I/O ports) may be assigned at least one unique tag. The tags may be used to identify and/or refer to respective network elements. The HLND kernel may comprises an interface to Elementary Network Description.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 21, 2013
    Inventors: Botond Szatmary, Eugene M. Izhikevich
  • Publication number: 20120308076
    Abstract: Object recognition apparatus and methods useful for extracting information from an input signal. In one embodiment, the input signal is representative of an element of an image, and the extracted information is encoded into patterns of pulses. The patterns of pulses are directed via transmission channels to a plurality of detector nodes configured to generate an output pulse upon detecting an object of interest. Upon detecting a particular object, a given detector node elevates its sensitivity to that particular object when processing subsequent inputs. In one implementation, one or more of the detector nodes are also configured to prevent adjacent detector nodes from generating detection signals in response to the same object representation. The object recognition apparatus modulates properties of the transmission channels by promoting contributions from channels carrying information used in object recognition.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Inventors: Filip Lukasz Piekniewski, Csaba Petre, Sach Hansen Sokol, Botond Szatmary, Jayram Moorkanikara Nageswaran, Eugene M. Izhikevich
  • Patent number: 8315305
    Abstract: Image processing systems and methods extract information from an input signal representative of an element of an image and to encode the information in a pulsed output signal. A plurality of channels communicates the pulsed output signal, each of the plurality of channels being characterized by a latency. The information may be encoded as a pattern of relative pulse latencies observable in pulses communicated through the plurality of channels and the pattern of relative pulse latencies is substantially insensitive to image contrast and/or image luminance. A filter can be employed to provide a generator signal based on the input signal and pulse latencies can be determined using a logarithmic function of the generator signal. The filter may be temporally and/or spatially balanced and characterized by an integral along spatial and/or temporal dimensions of the filter that is substantially zero for all values of a temporal and/or a spatial variable.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 20, 2012
    Assignee: Brain Corporation
    Inventors: Csaba Petre, Botond Szatmary, Eugene M. Izhikevich
  • Publication number: 20120209432
    Abstract: A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 16, 2012
    Applicant: NEUROSCIENCES RESEARCH FOUNDATION, INC.
    Inventors: Jason G. Fleischer, Botond Szatmary, Donald B. Hutson, Douglas A. Moore, James A. Snook, Gerald M. Edelman, Jeffrey L. Krichmar
  • Publication number: 20110235698
    Abstract: Image processing systems and methods extract information from an input signal representative of an element of an image and to encode the information in a pulsed output signal. A plurality of channels communicates the pulsed output signal, each of the plurality of channels being characterized by a latency. The information may be encoded as a pattern of relative pulse latencies observable in pulses communicated through the plurality of channels and the pattern of relative pulse latencies is substantially insensitive to image contrast and/or image luminance. A filter can be employed to provide a generator signal based on the input signal and pulse latencies can be determined using a logarithmic function of the generator signal. The filter may be temporally and/or spatially balanced and characterized by an integral along spatial and/or temporal dimensions of the filter that is substantially zero for all values of a temporal and/or a spatial variable.
    Type: Application
    Filed: August 26, 2010
    Publication date: September 29, 2011
    Inventors: Csaba Petre, Botond Szatmary, Eugene M. Izhikevich