Patents by Inventor Boyan Boyanov

Boyan Boyanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190374923
    Abstract: Provided herein are methods and compositions for placing single target molecules on a patterned substrate.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 12, 2019
    Inventors: Kevin L. Gunderson, Jingwei Bai, Boyan Boyanov
  • Patent number: 10446493
    Abstract: At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel. The channel is configured to contain the capping layer within the width of the conductive line.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 15, 2019
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Kanwal Jit Singh
  • Patent number: 10427155
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: October 1, 2019
    Assignee: Illumina, Inc.
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran
  • Publication number: 20190283024
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran
  • Patent number: 10350570
    Abstract: Provided herein are methods and compositions for placing single target molecules on a patterned substrate.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 16, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Kevin L. Gunderson, Jingwei Bai, Boyan Boyanov
  • Publication number: 20190204225
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. A passivation layer extends over the device base and forms an array of reaction recesses above the light guides. The biosensor also includes peripheral crosstalk shields that at least partially surround corresponding light guides of the guide array to reduce optical crosstalk between adjacent light sensors.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Patent number: 10254225
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. The biosensor also includes a shield layer having apertures that are positioned relative to the input regions of corresponding light guides such that the light emissions propagate through the apertures into the corresponding input regions. The shield layer extends between adjacent apertures and is configured to block the excitation light and the light emissions incident on the shield layer between the adjacent apertures.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 9, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Publication number: 20190041354
    Abstract: Apparatus and methods are disclosed for single molecule field effect sensors having conductive channels functionalized with a single active moiety. A region of a nanostructure (e.g., such as a silicon nanowire or a carbon nanotube) provide the conductive channel. Trapped state density of the nanostructure is modified for a portion of the nanostructure in proximity with a location where the active moiety is linked to the nanostructure. In one example, the semiconductor device includes a source, a drain, a channel including a nanostructure having a modified portion with an increased trap state density, the modified portion being further functionalized with an active moiety. A gate terminal is in electrical communication with the nanostructure. As a varying electrical signal is applied to an ionic solution in contact with the nanostructure channel, changes in current observed from the semiconductor device can be used to identify composition of the analyte.
    Type: Application
    Filed: June 29, 2018
    Publication date: February 7, 2019
    Inventor: Boyan Boyanov
  • Publication number: 20180315700
    Abstract: Techniques are disclosed that enable improved shorting margin between unlanded conductive interconnect features and neighboring conductive features. The techniques provided are particularly useful, for instance, when lithography registration errors cause neighboring conductive features to be physically closer than expected, but can also be used when such proximity is intentional. In some embodiments, the techniques can be implemented using a layer of electromigration management material (EMM) and one or more insulator layers, wherein the various layers are provisioned to enable a differential etch rate. In particular, the overall etch rate of materials above the target landing pad is faster than the overall etch rate of materials above the off-target landing pad, which results in a self-enclosed conductive interconnect feature having an asymmetric taper or profile.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 1, 2018
    Applicant: INTEL CORPORATION
    Inventor: BOYAN BOYANOV
  • Publication number: 20180155773
    Abstract: The present disclosure provides a method for sequencing nucleic acids. The method can include polymerase catalyzed incorporation of nucleotides into a nascent nucleic acid strand against a nucleic acid template, wherein the polymerase is attached to a charge sensor that detects nucleotide incorporation events. One or more non-natural nucleotide types that each produce a unique signatures at the charge sensor can be used to uniquely identify different nucleotides in the template nucleic acid.
    Type: Application
    Filed: May 11, 2016
    Publication date: June 7, 2018
    Inventors: Kevin L Gunderson, Jingwei Bai, Cheng-Yao Chen, Jeffrey G Mandell, Sergio Peisajovich, Philip G Collins, Gregory A Weiss, Boyan Boyanov
  • Publication number: 20180141020
    Abstract: Provided herein are methods and compositions for placing single target molecules on a patterned substrate.
    Type: Application
    Filed: December 14, 2015
    Publication date: May 24, 2018
    Inventors: Kevin L. Gunderson, Jingwei Bai, Boyan Boyanov
  • Patent number: 9960110
    Abstract: Techniques are disclosed that enable improved shorting margin between unlanded conductive interconnect features and neighboring conductive features. The techniques provided are particularly useful, for instance, when lithography registration errors cause neighboring conductive features to be physically closer than expected, but can also he used when such proximity is intentional. In some embodiments, the techniques can be implemented using a layer of electromigration management material (EMM) and one or more insulator layers, wherein the various layers are provisioned to enable a differential etch rate. In particular, the overall etch rate of materials above the target landing pad is faster than the overall etch rate of materials above the off-target landing pad, which results in a self-enclosed conductive interconnect feature having an asymmetric taper or profile.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: May 1, 2018
    Assignee: INTEL CORPORATION
    Inventor: Boyan Boyanov
  • Publication number: 20180112265
    Abstract: A method of nucleic acid sequencing. The method can include the steps of (a) providing a polymerase tethered to a solid support charge sensor; (b) providing one or more nucleotides, whereby the presence of the nucleotide can be detected by the charge sensor; and (c) detecting incorporation of the nucleotide into a nascent strand complementary to a template nucleic acid.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Boyan BOYANOV, Jeffrey G. MANDELL, Jingwei BAI, Kevin L. GUNDERSON, Cheng-Yao CHEN, Michel PERBOST
  • Publication number: 20180037950
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.
    Type: Application
    Filed: November 11, 2015
    Publication date: February 8, 2018
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 9876113
    Abstract: An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: January 23, 2018
    Assignee: INTEL CORPORATION
    Inventors: Anand Murthy, Boyan Boyanov, Glenn A. Glass, Thomas Hoffmann
  • Publication number: 20170356030
    Abstract: Under one aspect, a composition includes a substrate; a first polynucleotide coupled to the substrate; a second polynucleotide hybridized to the first polynucleotide; and a catalyst coupled to a first nucleotide of the second polynucleotide, the catalyst being operable to cause a chemiluminogenic molecule to emit a photon. Under another aspect, a method includes providing a catalyst operable to cause a first chemiluminogenic molecule to emit a photon; providing a substrate; providing a first polynucleotide coupled to the substrate; hybridizing a second polynucleotide to the first polynucleotide; coupling a first quencher to a first nucleotide of the second polynucleotide; and inhibiting, by the first quencher, photon emission by the first chemiluminogenic molecule.
    Type: Application
    Filed: September 10, 2015
    Publication date: December 14, 2017
    Inventors: Boyan Boyanov, Liangliang Qiang, Kevin L. Gunderson, Kay Klausing, Lea Pickering, Cyril De Lattre, Tarun Khurana
  • Publication number: 20170260582
    Abstract: The disclosure provides detection apparatus having one or more nanopores, methods for making apparatus having one or more nanopore and methods for using apparatus having one or more nanopores. Uses include, but are not limited to detection and sequencing of nucleic acids.
    Type: Application
    Filed: July 29, 2015
    Publication date: September 14, 2017
    Inventors: BOYAN BOYANOV, JEFFREY G MANDELL, KEVIN L GUNDERSON, JINGWEI BAI, LIANGLIANG QIANG, BRADLEY BAAS
  • Patent number: 9754886
    Abstract: Techniques are disclosed that enable improved shorting margin between unlanded conductive interconnect features and neighboring conductive features. In some embodiments, an etch may be applied to an insulator layer having one or more conductive features therein, such that the insulator layer is recessed below the top of the conductive features and the edges of the conductive features are rounded or otherwise softened. A conformal etchstop layer may then be deposited over the conductive features and the insulator material. A second insulator layer may be deposited above the conformal etchstop layer, and an interconnect feature may pass through the second insulator layer and the conformal etchstop layer to connect with the rounded portion of one of the conductive features. In some embodiments, the interconnect feature is an unlanded via and the unlanded portion of the via may or may not penetrate through the conformal barrier layer.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 5, 2017
    Assignee: INTEL CORPORATION
    Inventors: Boyan Boyanov, Kanwal Jit Singh, James Clarke, Alan Myers
  • Publication number: 20170207120
    Abstract: At least one conductive line in a dielectric layer over a substrate is recessed to form a channel. The channel is self-aligned to the conductive line. The channel can be formed by etching the conductive line to a predetermined depth using a chemistry comprising an inhibitor to provide uniformity of etching independent of a crystallographic orientation. A capping layer to prevent electromigration is deposited on the recessed conductive line in the channel The channel is configured to contain the capping layer within the width of the conductive line.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventors: Boyan Boyanov, Kanwal Jit Singh
  • Publication number: 20170189904
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Application
    Filed: May 27, 2015
    Publication date: July 6, 2017
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran