Patents by Inventor Boyd Albert Fowler

Boyd Albert Fowler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10263022
    Abstract: An image sensor is described having a pixel array. The pixel array has a unit cell that includes visible light photodiodes and an infra-red photodiode. The visible light photodiodes and the infra-red photodiode are coupled to a particular column of the pixel array. The unit cell has a first capacitor coupled to the visible light photodiodes to store charge from each of the visible-light photodiodes. The unit cell has a readout circuit to provide the first capacitor's voltage on the particular column. The unit cell has a second capacitor that is coupled to the infra-red photodiode through a first transfer gate transistor to receive charge from the infra-red photodiode during a time-of-flight exposure. The first capacitor is coupled to the infra-red photodiode through a second transfer gate transistor to receive charge from the infra-red photodiode during the time-of-flight exposure.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 16, 2019
    Assignee: Google LLC
    Inventors: Chung Chun Wan, Boyd Albert Fowler
  • Patent number: 10128287
    Abstract: An image sensor is described having a pixel cell unit. The pixel cell unit has first, second and third transfer gate transistor gates on a semiconductor surface respectively coupled between first, second and third visible light photodiode regions and a first capacitance region. The pixel cell unit has a fourth transfer gate transistor gate on the semiconductor surface coupled between a first infrared photodiode region and a second capacitance region.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: November 13, 2018
    Assignee: Google LLC
    Inventors: Chung Chun Wan, Boyd Albert Fowler
  • Patent number: 10067029
    Abstract: A method of determining a modulation transfer function (MTF) for an image includes receiving an image captured through the optical system, performing edge detection on columns or rows in the image to calculate a plurality of edge points, calculating a plurality polynomials to fit to the calculated edge points, each of the plurality of polynomials varying in degree, selecting a polynomial from the plurality of polynomials to represent the detected edge, and estimating the MTF based on the selected polynomial.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: September 4, 2018
    Assignee: Google LLC
    Inventors: Vlad Constantin Cardei, Boyd Albert Fowler
  • Patent number: 10062722
    Abstract: An image sensor includes a pixel array having plurality of pixel cells arranged into a plurality of rows and a plurality of columns of pixel cells in a first semiconductor die. A plurality of pixel support circuits are arranged in a second semiconductor die that is stacked and coupled together with the first semiconductor die. A plurality of interconnect lines are coupled between the first and second semiconductor dies, and each one of the plurality of pixel cells is coupled to a corresponding one of the plurality of pixel support circuits through a corresponding one plurality of interconnect lines. A plurality of shield bumps are disposed proximate to corners of the pixel cells in the pixel array and between the first and second semiconductor dies such that each one of the plurality of shield bumps is disposed between adjacent interconnect lines along a diagonal of the pixel array.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: August 28, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Keiji Mabuchi, Takayuki Goto, Vincent Venezia, Boyd Albert Fowler, Eric A. G. Webster
  • Patent number: 10044960
    Abstract: An image sensor for detecting light-emitting diode (LED) without flickering includes a pixel array with pixels. Each pixel including subpixels including a first and a second subpixel, dual floating diffusion (DFD) transistor, and a capacitor coupled to the DFD transistor. First subpixel includes a first photosensitive element to acquire a first image charge, and a first transfer gate transistor to selectively transfer the first image charge from the first photosensitive element to a first floating diffusion (FD) node. Second subpixel includes a second photosensitive element to acquire a second image charge, and a second transfer gate transistor to selectively transfer the second image charge from the second photosensitive element to a second FD node. DFD transistor coupled to the first and the second FD nodes. Other embodiments are also described.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: August 7, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Trygve Willassen, Johannes Solhusvik, Keiji Mabuchi, Gang Chen, Sohei Manabe, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Zhiqiang Lin, Siguang Ma, Dajiang Yang, Boyd Albert Fowler
  • Publication number: 20180097030
    Abstract: An image sensor includes a pixel array having plurality of pixel cells arranged into a plurality of rows and a plurality of columns of pixel cells in a first semiconductor die. A plurality of pixel support circuits are arranged in a second semiconductor die that is stacked and coupled together with the first semiconductor die. A plurality of interconnect lines are coupled between the first and second semiconductor dies, and each one of the plurality of pixel cells is coupled to a corresponding one of the plurality of pixel support circuits through a corresponding one plurality of interconnect lines. A plurality of shield bumps are disposed proximate to corners of the pixel cells in the pixel array and between the first and second semiconductor dies such that each one of the plurality of shield bumps is disposed between adjacent interconnect lines along a diagonal of the pixel array.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 5, 2018
    Inventors: Sohei Manabe, Keiji Mabuchi, Takayuki Goto, Vincent Venezia, Boyd Albert Fowler, Eric A. G. Webster
  • Publication number: 20170347047
    Abstract: An image sensor for detecting light-emitting diode (LED) without flickering includes a pixel array with pixels. Each pixel including subpixels including a first and a second subpixel, dual floating diffusion (DFD) transistor, and a capacitor coupled to the DFD transistor. First subpixel includes a first photosensitive element to acquire a first image charge, and a first transfer gate transistor to selectively transfer the first image charge from the first photosensitive element to a first floating diffusion (FD) node. Second subpixel includes a second photosensitive element to acquire a second image charge, and a second transfer gate transistor to selectively transfer the second image charge from the second photosensitive element to a second FD node. DFD transistor coupled to the first and the second FD nodes. Other embodiments are also described.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Duli Mao, Trygve Willassen, Johannes Solhusvik, Keiji Mabuchi, Gang Chen, Sohei Manabe, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Zhiqiang Lin, Siguang Ma, Dajiang Yang, Boyd Albert Fowler
  • Publication number: 20170330909
    Abstract: An image sensor is described having a pixel cell unit. The pixel cell unit has first, second and third transfer gate transistor gates on a semiconductor surface respectively coupled between first, second and third visible light photodiode regions and a first capacitance region. The pixel cell unit has a fourth transfer gate transistor gate on the semiconductor surface coupled between a first infrared photodiode region and a second capacitance region.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 16, 2017
    Inventors: Chung Chun Wan, Boyd Albert Fowler
  • Publication number: 20170317122
    Abstract: An image sensor is described having a pixel array. The pixel array has a unit cell that includes visible light photodiodes and an infra-red photodiode. The visible light photodiodes and the infra-red photodiode are coupled to a particular column of the pixel array. The unit cell has a first capacitor coupled to the visible light photodiodes to store charge from each of the visible-light photodiodes. The unit cell has a readout circuit to provide the first capacitor's voltage on the particular column. The unit cell has a second capacitor that is coupled to the infra-red photodiode through a first transfer gate transistor to receive charge from the infra-red photodiode during a time-of-flight exposure. The first capacitor is coupled to the infra-red photodiode through a second transfer gate transistor to receive charge from the infra-red photodiode during the time-of-flight exposure.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Inventors: Chung Chun Wan, Boyd Albert Fowler
  • Publication number: 20170234765
    Abstract: A method of determining a modulation transfer function (MTF) for an image includes receiving an image captured through the optical system, performing edge detection on columns or rows in the image to calculate a plurality of edge points, calculating a plurality polynomials to fit to the calculated edge points, each of the plurality of polynomials varying in degree, selecting a polynomial from the plurality of polynomials to represent the detected edge, and estimating the MTF based on the selected polynomial.
    Type: Application
    Filed: October 11, 2016
    Publication date: August 17, 2017
    Inventors: Vlad Constantin Cardei, Boyd Albert Fowler
  • Publication number: 20170150112
    Abstract: This document describes methodologies for mobile camera color management. These techniques and apparatuses enable improved consistency of color quality, faster color tuning process, adaptability to new light sources, and easier adoption on the production line than many conventional color management techniques.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Inventors: Honglei Wu, Boyd Albert Fowler
  • Publication number: 20170099427
    Abstract: Certain implementations of the disclosed technology may include methods and apparatuses for calculating an optimal lens position for a camera utilizing curve-fitting auto-focus. According to an example implementation, a method (900) is provided. The method (900) may include calculating modulation transfer function values for first and second test image frames associated with respective first and second lens positions of a camera (902, 904). The method may also include identifying, from a database including a plurality of predetermined modulation transfer function curves associated with the camera, a particular predetermined modulation transfer function curve based on the first and second modulation transfer function values (906). The method may also include calculating an optimal lens position for the camera based on the identified particular predetermined modulation transfer function curve (908).
    Type: Application
    Filed: October 5, 2015
    Publication date: April 6, 2017
    Inventors: Honglei Wu, Bo Xu, Boyd Albert Fowler