Patents by Inventor Brad A. Rix

Brad A. Rix has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8394889
    Abstract: A composition and process for manufacturing a camouflaged aircraft component. The process includes providing an aircraft component; applying an uncured coating onto the aircraft component wherein the uncured coating comprises polysilazane resin, at least one pigment, at least one matting agent, and at least one diluent; allowing the diluent to evaporate; curing the coating to provided a cured coating that comprises cured polysilazane, at least one pigment, and at least one matting agent.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 12, 2013
    Assignee: Texas Research International Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Publication number: 20110183134
    Abstract: A composition and process for manufacturing a camouflaged aircraft component. The process includes providing an aircraft component; applying an uncured coating onto the aircraft component wherein the uncured coating comprises polysilazane resin, at least one pigment, at least one matting agent, and at least one diluent; allowing the diluent to evaporate; curing the coating to provided a cured coating that comprises cured polysilazane, at least one pigment, and at least one matting agent.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 28, 2011
    Inventors: John W. Bulluck, Brad A. Rix
  • Patent number: 7919189
    Abstract: A composition and process for manufacturing a camouflaged aircraft component. The process includes providing an aircraft component; applying an uncured coating onto the aircraft component wherein the uncured coating comprises polysilazane resin, at least one pigment, at least one matting agent, and at least one diluent; allowing the diluent to evaporate; curing the coating to provided a cured coating that comprises cured polysilazane, at least one pigment, and at least one matting agent.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 5, 2011
    Assignee: Texas Research International, Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Publication number: 20090050737
    Abstract: A composition and process for manufacturing a camouflaged aircraft component. The process includes providing an aircraft component; applying an uncured coating onto the aircraft component wherein the uncured coating comprises polysilazane resin, at least one pigment, at least one matting agent, and at least one diluent; allowing the diluent to evaporate; curing the coating to provided a cured coating that comprises cured polysilazane, at least one pigment, and at least one matting agent.
    Type: Application
    Filed: June 26, 2008
    Publication date: February 26, 2009
    Inventors: John W. Bulluck, Brad A. Rix
  • Patent number: 7465477
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: December 16, 2008
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7435767
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 14, 2008
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7435451
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: October 14, 2008
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7291656
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: November 6, 2007
    Assignee: Texas Research Institute, Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Patent number: 7291657
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: November 6, 2007
    Assignee: Texas Research International, Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Patent number: 7276542
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: October 2, 2007
    Assignee: Texas Research International, Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Publication number: 20070032575
    Abstract: Syntactic foam, comprising a cured product obtained from a composition which comprises: at least one epoxy resin, a curing agent, and hollow microspheres, wherein the microspheres have a density less than 0.25 g/cc and wherein the cured syntactic epoxy foam has a density less than 0.7 g/cc. The foam may be used to repair composites in aircraft.
    Type: Application
    Filed: August 8, 2005
    Publication date: February 8, 2007
    Inventors: John W. Bulluck, Brad A. Rix, Peyton Hall
  • Patent number: 7144544
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: December 5, 2006
    Assignee: Texas Research International, Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Publication number: 20060229378
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Application
    Filed: December 6, 2005
    Publication date: October 12, 2006
    Inventors: John Bulluck, Brad Rix
  • Publication number: 20060155001
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Application
    Filed: December 6, 2005
    Publication date: July 13, 2006
    Inventors: John Bulluck, Brad Rix
  • Publication number: 20060094795
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Application
    Filed: December 6, 2005
    Publication date: May 4, 2006
    Inventors: John Bulluck, Brad Rix
  • Patent number: 7037958
    Abstract: This invention concerns an epoxy coating for use as a non-skid surface for applications such as the deck of an aircraft carrier. The epoxy coating can be formulated from (a) an amine curing agent, (b) an epoxide-containing toughening agent such as a polysulfide and/or a polythioether, (c) an epoxy resin, (d) a rubber toughening agent, and (e) an optional fire retardant, a glass fiber thixotrope and impact toughening agent, an optional pigment, an optional corrosion inhibitor, an optional moisture penetration inhibitor, an optional ultraviolet light stabilizer, an optional abrasive aggregate, or a combination thereof.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 2, 2006
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John W. Bulluck, Joshua B. Lightfoot, Brad A. Rix
  • Patent number: 7014790
    Abstract: This invention concerns an acrylate adhesive that cures at room temperature and has excellent dimensional stability. The adhesive may be used in applications such as for fiber optic connectors. The adhesive may be made by curing a two-part system or by use of a primer-based system. The two part system may include an adhesive part A, which may include one or more monofunctional, difunctional, or trifunctional acrylate or methacrylate monomers, a peroxide or hydroperoxide free-radical initiator, an antioxidant, and optionally, additives such as thickeners, thixotropes, and adhesion promoters; and an activator part B, which may contain a N,N-disubstituted aromatic amine, a difunctional methacrylate monomer, an antioxidant, and optionally, additives such as thickeners, thixotropes, and adhesion promoters.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 21, 2006
    Assignee: Texas Research International, Inc.
    Inventors: John Werner Bulluck, Brad A. Rix
  • Publication number: 20040235977
    Abstract: An ultraviolet (UV) light curable formulation useful for repairing composite materials, comprising: an acrylic oligomer, an acrylic monomer, and a photoinitiator. This formulation may include fiberglass. The photoinitiator can be a combination of a bis-acylphosphine oxide and an alpha hydroxy ketone. The formulation can cure rapidly, such as in about 20 minutes. The cured formulation can have a Tg above 150° C.
    Type: Application
    Filed: February 20, 2004
    Publication date: November 25, 2004
    Applicant: Texas Research International, Inc.
    Inventors: John W. Bulluck, Brad A. Rix
  • Patent number: 6734249
    Abstract: This invention concerns an acrylate adhesive that cures at room temperature and has excellent dimensional stability. The adhesive may be used in applications such as for fiber optic connectors. The adhesive may be made by curing a two-part system or by use of a primer-based system. The two part system may include an adhesive part A, which may include one or more monofunctional, difunctional, or trifunctional acrylate or methacrylate monomers, a peroxide or hydroperoxide free-radical initiator, an antioxidant, and optionally, additives such as thickeners, thixotropes, and adhesion promoters; and an activator part B, which may contain a N,N-disubstituted aromatic amine, a difunctional methacrylate monomer, an antioxidant, and optionally, additives such as thickeners, thixotropes, and adhesion promoters.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: May 11, 2004
    Assignee: Texas Research International, Inc.
    Inventors: John Werner Bulluck, Brad A. Rix
  • Patent number: 6632860
    Abstract: A process for coating a solid surface comprises 1) applying onto a solid surface a primer coating prepared from an amine curing agent, a polysulfide toughening agent, an epoxy resin, a rubber toughening agent, a fire retardant, a glass fiber thixotrope, and a pigment; and 2) applying onto the primer coating a topcoat prepared from an amine curing agent, a polysulfide toughening agent, an epoxy resin, a rubber toughening agent, a fire retardant, a glass fiber thixotrope, a pigment and an abrasive aggregate.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: October 14, 2003
    Assignee: Texas Research International, Inc.
    Inventors: George P. Hansen, Rock A. Rushing, John Werner Bulluck, Joshua B. Lightfoot, Brad A. Rix