Patents by Inventor Brad Anthony Dinardo

Brad Anthony Dinardo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11699738
    Abstract: A qubit array reparation system includes a reservoir of ultra-cold particle, a detector that determines whether or not qubit sites of a qubit array include respective qubit particles, and a transport system for transporting an ultra-cold particle to a first qubit array site that has been determined by the probe system to not include a qubit particle so that the ultra-cold particle can serve as a qubit particle for the first qubit array site. A qubit array reparation process includes maintaining a reservoir of ultra-cold particles, determining whether or not qubit-array sites contain respective qubit particles, each qubit particle having a respective superposition state, and, in response to a determination that a first qubit site does not contain a respective qubit particle, transporting an ultracold particle to the first qubit site to serve as a qubit particle contained by the first qubit site.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: July 11, 2023
    Assignees: ColdQuanta, Inc., The Regents of the University of Colorado, a body corporate
    Inventors: Dana Zachary Anderson, Brad Anthony Dinardo
  • Publication number: 20210336032
    Abstract: A qubit array reparation system includes a reservoir of ultra-cold particle, a detector that determines whether or not qubit sites of a qubit array include respective qubit particles, and a transport system for transporting an ultra-cold particle to a first qubit array site that has been determined by the probe system to not include a qubit particle so that the ultra-cold particle can serve as a qubit particle for the first qubit array site. A qubit array reparation process includes maintaining a reservoir of ultra-cold particles, determining whether or not qubit-array sites contain respective qubit particles, each qubit particle having a respective superposition state, and, in response to a determination that a first qubit site does not contain a respective qubit particle, transporting an ultracold particle to the first qubit site to serve as a qubit particle contained by the first qubit site.
    Type: Application
    Filed: May 21, 2021
    Publication date: October 28, 2021
    Applicant: ColdQuanta, Inc.
    Inventors: Dana Zachary ANDERSON, Brad Anthony DINARDO
  • Patent number: 11069790
    Abstract: The present invention provides an matter-wave transistor in which the flow of particles (e.g., atoms and molecules) through the transistor is a result of resonant tunneling from a source well, through a gate well and into a drain well (as opposed to being a result of collisions, as in a classical atomtronic transistor). The transistor current of matter-wave particles can be controlled as a function of the breadth of resonant tunneling conditions of the gate well. For example, the resonant tunneling conditions of a gate well that does not include a dipole-oscillating Bose-Einstein condensate (DOBEC) can be broadened by including a DOBEC in the gate well. Similarly, the breadth of resonant tunneling conditions of the gate well can be changed by changing the particle population of a DOBEC in the gate well.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 20, 2021
    Assignees: ColdQuanta, Inc., The Regents of the University of Colorado
    Inventors: Dana Zachary Anderson, Brad Anthony Dinardo
  • Publication number: 20200161446
    Abstract: The present invention provides an matter-wave transistor in which the flow of particles (e.g., atoms and molecules) through the transistor is a result of resonant tunneling from a source well, through a gate well and into a drain well (as opposed to being a result of collisions, as in a classical atomtronic transistor). The transistor current of matter-wave particles can be controlled as a function of the breadth of resonant tunneling conditions of the gate well. For example, the resonant tunneling conditions of a gate well that does not include a dipole-oscillating Bose-Einstein condensate (DOBEC) can be broadened by including a DOBEC in the gate well. Similarly, the breadth of resonant tunneling conditions of the gate well can be changed by changing the particle population of a DOBEC in the gate well.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 21, 2020
    Inventors: Dana Zachary ANDERSON, Brad Anthony Dinardo