Patents by Inventor Brad Fowler

Brad Fowler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11065449
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 20, 2021
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20180359332
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: November 6, 2017
    Publication date: December 13, 2018
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20180167482
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: November 6, 2017
    Publication date: June 14, 2018
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 9808627
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 7, 2017
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Publication number: 20160067496
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 9186510
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 17, 2015
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 8929991
    Abstract: Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits, are disclosed. A method in accordance with one embodiment includes engaging a patient in a function controlled at least in part by a target neural population, and applying electromagnetic signals to the target neural population. A target parameter in accordance with which the electromagnetic signals are applied is adjusted, based at least in part on a characteristic of the patient's performance of the function. Electromagnetic signals are applied to the patient with the adjusted target parameter, and the patient's response to the electromagnetic signals, including the characteristic of the patient's performance, is evaluated.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: January 6, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Brad Fowler, Leif R. Sloan, Joleen Borgerding
  • Publication number: 20140222113
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: December 9, 2013
    Publication date: August 7, 2014
    Applicant: Advanced Neuromodulation Systems, Inc., d/b/a St. Jude Medical Neuromodulation Division
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 8718777
    Abstract: Methods and systems for intracranial neurostimulation and/or sensing are disclosed. An intracranial signal transmission system in accordance with an embodiment of the invention includes a generally electrically insulating body having a head portion configured to be positioned at least proximate to an outer surface of a patient's skull, and a shaft portion configured to extend into an aperture in the patient's skull. The system can further include at least one electrical contact portion integrated with the support body. The at least one electrical contact portion can be positioned to transfer electrical signals to, from, or both to and from the patient's brain via an aperture in the patient's skull.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 6, 2014
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: David Warren Lowry, Brad Fowler, Gene Thompson
  • Patent number: 8606361
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 8538537
    Abstract: Systems and methods for providing targeted neural stimulation therapy to address neurological disorders, including neuropsychiatric and neuropsychological disorders are disclosed. A method for treating a patient's neurological disorder in accordance with a particular embodiment includes, in a patient identified as having at least one of a neuropsychological disorder and a neuropsychiatric disorder, implanting at least one stimulation electrode within the patient's skull cavity, and outside a cortical surface of the patient's brain. The electrode is implanted at a location in a range of about 15 mm to about 35 mm anterior to a precentral sulcus reference point that is positioned at the precentral sulcus and at the patient's middle frontal gyrus. The method can further include treating the patient's disorder by applying electrical stimulation to the patient via the at least one stimulation electrode.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 17, 2013
    Assignee: Advanced Neuromodulations Systems, Inc.
    Inventors: Justin Hulvershorn, Brad Fowler, Bradford Evan Gliner, Leif R. Sloan, Brian Kopell, David Alan Soltysik
  • Patent number: 8504159
    Abstract: Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods are disclosed. A method in accordance with one embodiment of the invention includes identifying an affected region, with the affected region including neuronal tissue that, at least during a pre-dysfunctional period, was in neural communication with neuronal tissue in a dysfunctional region. The affected tissue can be functionally adversely affected by neuronal dysfunction in the dysfunctional region. The method can further include applying electromagnetic signals to the neuronal tissue in the affected region. For example, the electromagnetic signals can be applied to a hypo-active neural region that is not physically damaged, and has been identified as likely to recover at least in part as a result of electromagnetic signals. Signals can be applied at sub-threshold levels to cortical and/or subcortical regions.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: August 6, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Brad Fowler, Bradford E. Gliner, David Himes
  • Publication number: 20120253442
    Abstract: A device and method for intracranial electrical stimulation to effectuate a change in neural-functions of a patient, by electrical stimulating the brain at a site where neuroplasticity is occurring or is expected to occur, where the stimulation site may be different than the region in the brain where neural activity is typically present to perform the particular neural function according to the functional organization of the brain. In one embodiment in which neuroplasticity is related to the neural-function occurs in the brain, identifying the location where such neuroplasticity is present or expected to occur. Where neuroplasticity is not occurring in the brain, an alternative aspect is to induce neuroplasticity at a stimulation site where it is expected to occur. The methods can use electrical pulses that increase the resting membrane potential of neurons at the stimulation site to a subthreshold level.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 4, 2012
    Inventors: Bradford Evan Gliner, Brad Fowler, Andrew D. Firlik, Jeffrey Balzer, Alan J. Levy, Kent Leyde
  • Publication number: 20120078327
    Abstract: Microdevice-based electrode assemblies and associated neurostimulation systems, devices and methods are disclosed. A system in accordance with a particular embodiment includes a microdevice positioned to send signals or fluids to the patient, and/or to receive signals or fluids from the patient. The microdevice can include a housing having an external surface, and a signal/fluid transmitter/receiver positioned within the housing and coupled to a terminal carried by the housing. The system can further include a patient-implantable, flexible support member attached to the external surface of the housing and carrying the housing. The system can still further include an interface carried by the support member and connected to the terminal, with the interface being positioned to direct signals or fluids into patient tissue, and/or receive signals or fluids from the patient tissue.
    Type: Application
    Filed: December 1, 2011
    Publication date: March 29, 2012
    Inventors: Leif R. Sloan, Brad Fowler
  • Patent number: 8126562
    Abstract: Systems and methods for neural stimulation may include a stimulus unit; a first electrode assembly having a first set of contacts; and a second set of contacts. The stimulus unit can be an implantable pulse generator including a first terminal that can be biased at a first signal polarity and a second terminal that can be biased at a second signal polarity. The first electrode assembly includes a support member configured to be placed at the stimulation site, the first set of contacts carried by the support member, and a first lead configured to be attached to the first terminal of the implantable pulse generator for biasing the surface contacts at the first polarity. The second set of contacts is detached from the surface electrode assembly. The second set of contacts can be one or more conductive elements fixed to or forming portions of the implantable pulse generator, or a separate electrode array.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: February 28, 2012
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Brad Fowler, Bradford Evan Gliner, Allen Wyler
  • Publication number: 20120041498
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Application
    Filed: July 8, 2011
    Publication date: February 16, 2012
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 8090446
    Abstract: Methods for providing electrical stimulation therapy to a cortex of a patient via a plurality of electrodes proximate to the cortex and a pulse generator implanted in the patient. One embodiment of a method in accordance with the invention comprises determining whether the current applied via the plurality of electrodes results in a sufficient current density in the cortex. The current density, for example, may need to be high enough to induce a response in the patient for determining the activation threshold of the specific stimulation site, or the current density may need to be high enough to perform a specific therapy. If the current density is not sufficient, the method continues by selecting a subset of the plurality of electrodes, and applying electrical current to the cortex via the subset of the electrodes.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: January 3, 2012
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Brad Fowler, Justin Hulvershorn, Bradford E. Gliner, Leif R. Sloan
  • Publication number: 20110213440
    Abstract: Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods are disclosed. A method in accordance with one embodiment of the invention includes identifying an affected region, with the affected region including neuronal tissue that, at least during a pre-dysfunctional period, was in neural communication with neuronal tissue in a dysfunctional region. The affected tissue can be functionally adversely affected by neuronal dysfunction in the dysfunctional region. The method can further include applying electromagnetic signals to the neuronal tissue in the affected region. For example, the electromagnetic signals can be applied to a hypo-active neural region that is not physically damaged, and has been identified as likely to recover at least in part as a result of electromagnetic signals. Signals can be applied at sub-threshold levels to cortical and/or subcortical regions.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 1, 2011
    Inventors: Brad Fowler, Bradford E. Gliner, David Himes
  • Patent number: 7983762
    Abstract: Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy are disclosed. In one embodiment, a system and/or method may apply electromagnetic stimulation to a patient's nervous system over a first time domain according to a first set of stimulation parameters, and over a second time domain according to a second set of stimulation parameters. The first and second time domains may be sequential, simultaneous, or nested. Stimulation parameters may vary in accordance with one or more types of duty cycle, amplitude, pulse repetition frequency, pulse width, spatiotemporal, and/or polarity variations. Stimulation may be applied at subthreshold, threshold, and/or suprathreshold levels in one or more periodic, aperiodic (e.g., chaotic), and/or pseudo-random manners. In some embodiments stimulation may comprise a burst pattern having an interburst frequency corresponding to an intrinsic brainwave frequency, and regular and/or varying intraburst stimulation parameters.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: July 19, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Bradford Evan Gliner, Allen Wyler, Brad Fowler, W. Douglas Sheffield, Richard Kuntz, Kent Leyde, Leif R. Sloan
  • Patent number: 7949401
    Abstract: Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods are disclosed. A method in accordance with one embodiment of the invention includes identifying an affected region, with the affected region including neuronal tissue that, at least during a pre-dysfunctional period, was in neural communication with neuronal tissue in a dysfunctional region. The affected tissue can be functionally adversely affected by neuronal dysfunction in the dysfunctional region. The method can further include applying electromagnetic signals to the neuronal tissue in the affected region. For example, the electromagnetic signals can be applied to a hypo-active neural region that is not physically damaged, and has been identified as likely to recover at least in part as a result of electromagnetic signals. Signals can be applied at sub-threshold levels to cortical and/or subcortical regions.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: May 24, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Brad Fowler, Bradford E. Gliner, David Himes