Patents by Inventor Brad Howard Jones

Brad Howard Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873367
    Abstract: Novel polymers are depolymerizable by metathesis of a cleavable unit. As an example, a series of linear and crosslinked polyurethanes were prepared that can be selectively depolymerized under mild conditions. Two unique polyols were synthesized bearing unsaturated units in a configuration designed to favor ring-closing metathesis to five- and six-membered cycloalkenes. These polyols were co-polymerized with toluene diisocyanate to generate linear polyurethanes and trifunctional hexamethylene- and diphenylmethane-based isocyanates to generate crosslinked polyurethanes. The polyol design is such that the ring-closing metathesis reaction cleaves the backbone of the polymer chain. Upon exposure to dilute solutions of Grubbs' catalyst under ambient conditions, the polyurethanes were rapidly depolymerized to low molecular weight, soluble products bearing vinyl and cycloalkene functionalities. These functionalities enabled further re-polymerization by traditional strategies for polymerization of double bonds.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 16, 2024
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Brad Howard Jones, Chad Lynn Staiger
  • Patent number: 11840586
    Abstract: The invention is directed to latent metathesis-active resin compositions and additive manufacturing approaches. The latent metathesis-active compositions comprise at least one latent metathesis catalyst, at least one curable metathesis-active monomer, and optional fillers, photosensitizers, and/or a secondary monomer resin system for dual-cure. A method comprises extruding a latent metathesis-active resin from a dispensing apparatus and spatially triggering a ring-opening metathesis polymerization by directed irradiation with light or directed application of a thermal stimuli for direct-ink write printing of objects. Another method uses a latent metathesis-active resin for vat photopolymerization and stereolithographic printing of objects.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: December 12, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Leah Appelhans, Samuel Leguizamon, Brad Howard Jones, Adam Wade Cook
  • Publication number: 20230227646
    Abstract: Polymerization-induced phase separation enables fine control over thermoset network morphologies, yielding heterogeneous structures with domain sizes tunable over 1-100 nm. However, the controlled chain-growth polymerization techniques exclusively employed to regulate morphology at these length scales are unsuitable for most thermoset materials typically formed through step-growth mechanisms. By employing binary mixtures in place of the classic constituents of phase-separating thermosets—resin, curing agent, and secondary polymer—facile tunability over morphology can be achieved through a single compositional parameter. Indeed, this method yields morphologies spanning nano-scale to macro-scale, controlled by the relative reactivities and thermodynamic compatibility of the network components. Due to the connection between chain dynamics and microstructure in these materials, the tunable morphology enables exquisite control over glass transition and other physical and mechanical properties.
    Type: Application
    Filed: January 17, 2022
    Publication date: July 20, 2023
    Inventors: Brad Howard Jones, Samuel Leguizamon
  • Publication number: 20230098669
    Abstract: The invention is directed to the selective dual wavelength olefin metathesis polymerization for additive manufacturing. Dual-wavelength stereolithographic printing uses ring-opening metathesis polymerization of the metathesis-active polymers. As an example, a resin formulation based on dicyclopentadiene was produced using a photolatent olefin metathesis catalyst, various photosensitizers and photobase generators to achieve efficient initiation by light at one wavelength (e.g., blue) and fast catalyst decomposition and polymerization deactivation by light at a second wavelength (e.g., ultraviolet). This process enables 2-dimensional stereolithographic printing, either using photomasks or with patterned, collimated light. Importantly, the same process was readily adapted for 3-dimensional continuous additive manufacturing, with printing rates of up to 36 mm h?1 for patterned light and up to 180 mm h?1 using un-patterned, high intensity light.
    Type: Application
    Filed: August 31, 2022
    Publication date: March 30, 2023
    Inventors: Samuel Carlos Leguizamon, Jeffrey Clayton Foster, Adam W. Cook, Leah Appelhans, Erica M. Redline, Brad Howard Jones
  • Publication number: 20220282017
    Abstract: The invention is directed to latent metathesis-active resin compositions and additive manufacturing approaches. The latent metathesis-active compositions comprise at least one latent metathesis catalyst, at least one curable metathesis-active monomer, and optional fillers, photosensitizers, and/or a secondary monomer resin system for dual-cure. A method comprises extruding a latent metathesis-active resin from a dispensing apparatus and spatially triggering a ring-opening metathesis polymerization by directed irradiation with light or directed application of a thermal stimuli for direct-ink write printing of objects. Another method uses a latent metathesis-active resin for vat photopolymerization and stereolithographic printing of objects.
    Type: Application
    Filed: February 22, 2022
    Publication date: September 8, 2022
    Inventors: Leah Appelhans, Samuel Leguizamon, Brad Howard Jones, Adam Wade Cook
  • Publication number: 20210371575
    Abstract: Novel polymers are depolymerizable by metathesis of a cleavable unit. As an example, a series of linear and crosslinked polyurethanes were prepared that can be selectively depolymerized under mild conditions. Two unique polyols were synthesized bearing unsaturated units in a configuration designed to favor ring-closing metathesis to five- and six-membered cycloalkenes. These polyols were co-polymerized with toluene diisocyanate to generate linear polyurethanes and trifunctional hexamethylene- and diphenylmethane-based isocyanates to generate crosslinked polyurethanes. The polyol design is such that the ring-closing metathesis reaction cleaves the backbone of the polymer chain. Upon exposure to dilute solutions of Grubbs' catalyst under ambient conditions, the polyurethanes were rapidly depolymerized to low molecular weight, soluble products bearing vinyl and cycloalkene functionalities. These functionalities enabled further re-polymerization by traditional strategies for polymerization of double bonds.
    Type: Application
    Filed: April 29, 2021
    Publication date: December 2, 2021
    Inventors: Brad Howard Jones, Chad Lynn Staiger