Patents by Inventor Brad Wilson VanTassel

Brad Wilson VanTassel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11976565
    Abstract: A vibration dampening system includes a vibration dampening element for a turbine nozzle or blade. A body opening extends through the turbine nozzle or blade, e.g., through the airfoil among potentially other parts of the nozzle or blade. A vibration dampening element includes a plurality of stacked damper pins within the body opening. The damper pins include an outer body having an inner opening, a first end surface and an opposing second end surface; and an inner body nested and movable within the inner opening of the outer body. The end surfaces frictionally engage to dampen vibration. The inner body has a first central opening including a first portion configured to engage an elongated body therein and an outer surface configured to frictionally engage a portion of the inner opening of the outer body to dampen vibration.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: May 7, 2024
    Assignee: GE Infrastructure Technology LLC
    Inventors: Zachary John Snider, Brad Wilson VanTassel, Brian Denver Potter, John McConnell Delvaux
  • Patent number: 11965429
    Abstract: A turbomachine component has a wall outer surface and an internal coolant source. A film-cooling hole is in the wall and extends from the internal coolant source to the wall outer surface. The film-cooling hole includes a metering section in fluid communication with the internal coolant source, and a diffuser section in fluid communication with the metering section and including a first internal surface spaced from a second internal surface. A coating collector receives part of a coating and is part of the diffuser section. The film-cooling hole also includes a hood section including a member extending outwardly from the wall outer surface. The member may include a hood internal surface contiguous with the first internal surface of the diffuser section and a hood outer surface parallel to the wall outer surface. The hood section reduces, and possibly prevents, the coating from filling the film-cooling hole during application thereof.
    Type: Grant
    Filed: September 22, 2023
    Date of Patent: April 23, 2024
    Assignee: GE INFRASTRUCTURE TECHNOLOGY LLC
    Inventor: Brad Wilson VanTassel
  • Publication number: 20240035384
    Abstract: A vibration dampening system includes a vibration dampening element for a turbine nozzle or blade. A body opening extends through the turbine nozzle or blade, e.g., through the airfoil among potentially other parts of the nozzle or blade. A vibration dampening element includes a plurality of stacked damper pins within the body opening. The damper pins include an outer body having an inner opening, a first end surface and an opposing second end surface; and an inner body nested and movable within the inner opening of the outer body. The end surfaces frictionally engage to dampen vibration. The inner body has a first central opening including a first portion configured to engage an elongated body therein and an outer surface configured to frictionally engage a portion of the inner opening of the outer body to dampen vibration.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Zachary John Snider, Brad Wilson VanTassel, Brian Denver Potter, John McConnell Delvaux
  • Publication number: 20230399959
    Abstract: A turbine component includes a first structure exposed to a hot gas path and a second structure integral with the first structure but isolated from the hot gas path. A first fluid passage in the first structure delivers a thermal transfer fluid, e.g., air, through the first structure to cool the first structure. A second fluid passage is defined within the second structure and is in fluid communication with the first fluid passage. After heat transfer in the first structure, the thermal transfer fluid is hotter than a temperature of the second structure and thus increases the temperature of the second structure. The heat transfer to the second structure reduces a temperature difference between the first structure and the second structure that would, without heating, cause thermal stress between the structures. The heating of the second structure reduces the need for early maintenance and lengthens the lifespan of the component.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 14, 2023
    Inventors: Brandon Lee Cox, Brad Wilson VanTassel, Benjamin Paul Lacy
  • Patent number: 11572803
    Abstract: A turbine airfoil includes a body including a wall defining pressure and suction sides, and a leading edge extending between the pressure and suction sides. A cooling circuit inside the wall of the body includes at least one of: a) a suction side to pressure side cooling sub-circuit including a first cooling passage(s) extending from the suction side to the pressure side around the leading edge to a first plenum, and a plurality of first film cooling holes communicating with the first plenum and extending through the wall on the pressure side; and b) a pressure side to suction side cooling sub-circuit including second cooling passage(s) extending from the pressure side to the suction side around the leading edge to a second plenum, and a plurality of second film cooling holes communicating with the second plenum and extending through the wall on the suction side.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: February 7, 2023
    Assignee: General Electric Company
    Inventors: Benjamin Paul Lacy, Ibrahim Sezer, Brad Wilson VanTassel
  • Patent number: 11480070
    Abstract: A coolant delivery system for a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, each independent circuit of cooling channels including a plurality of headers and a plurality of feed tubes fluidly coupling the plurality of headers to a supply of cooling fluid; and an impingement plate connected to the exterior wall of the component by the plurality of feed tubes of the independent circuits of cooling channels, wherein, in each of the plurality of independent circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes and the plurality of headers into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: October 25, 2022
    Assignee: General Electric Company
    Inventors: Matthew Troy Hafner, Brad Wilson VanTassel, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Patent number: 11454133
    Abstract: An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, wherein the plurality of circuits of cooling channels are interwoven together; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling each of the plurality of circuits of cooling channels to at least one supply of cooling fluid, wherein, in each of the plurality of circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 27, 2022
    Assignee: General Electric Company
    Inventors: Matthew Troy Hafner, Brad Wilson VanTassel, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Patent number: 11434767
    Abstract: An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: at least one coolant feed channel fluidly coupled to a supply of cooling fluid; and an interconnected circuit of cooling channels, including: an interconnected circuit of cooling channels embedded within an exterior wall of the component; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling a supply of cooling fluid to the interconnected circuit of cooling channels; wherein the cooling fluid flows through the plurality of feed tubes into the interconnected circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 6, 2022
    Assignee: General Electric Company
    Inventors: Matthew Troy Hafner, Lyndsay Marie Kibler, Brad Wilson VanTassel, Benjamin Paul Lacy, Zachary John Snider, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Publication number: 20220220858
    Abstract: An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, wherein the plurality of circuits of cooling channels are interwoven together; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling each of the plurality of circuits of cooling channels to at least one supply of cooling fluid, wherein, in each of the plurality of circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
    Type: Application
    Filed: October 25, 2019
    Publication date: July 14, 2022
    Inventors: Matthew Troy Hafner, Brad Wilson VanTassel, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Publication number: 20220205363
    Abstract: A coolant delivery system for a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, each independent circuit of cooling channels including a plurality of headers and a plurality of feed tubes fluidly coupling the plurality of headers to a supply of cooling fluid; and an impingement plate connected to the exterior wall of the component by the plurality of feed tubes of the independent circuits of cooling channels, wherein, in each of the plurality of independent circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes and the plurality of headers into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 30, 2022
    Inventors: Matthew Troy Hafner, Brad Wilson VanTassel, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Patent number: 11358335
    Abstract: A mask is provided for an additively manufactured part including a plurality of spaced openings in a surface of the part. The mask is made with the part and includes an attachment ligament configured to integrally couple to the part between the openings in a cantilever fashion. First and second cover members include a proximal ends integrally coupled to the attachment ligament and distal ends extending at least partially over a respective portions of the plurality of openings. A detachment member extends from each of the first and second cover members. The attachment ligament is the sole connection to the part. The mask may have an umbrella shape in cross-section.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: June 14, 2022
    Assignee: General Electric Company
    Inventors: Travis J Packer, Brad Wilson VanTassel, Christopher Donald Porter, Jonathan Matthew Lomas, Glenn Curtis Taxacher
  • Patent number: 11313237
    Abstract: A conforming coating mask is used with a turbine component having a plurality of cooling holes. The conforming coating mask includes at least two anchors; a plurality of radial mask strips integrally formed with and extending between each of the at least two anchors; and at least one coating mask securing insert. Each at least one coating mask securing insert integrally formed with a respective at least one radial mask strip; wherein the plurality of radial mask strips align with and cover the plurality of cooling holes.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 26, 2022
    Assignee: General Electric Company
    Inventors: Jeffrey Clarence Jones, Zachary John Snider, Christopher Donald Porter, Brad Wilson VanTassel
  • Patent number: 11242760
    Abstract: A turbine rotor blade is additively manufactured and includes an airfoil body with a radially extending chamber for receiving a coolant flow, a tip end at a radial outer end of the airfoil body, and a shank at a radial inner end of the airfoil body. The radially extending chamber extends at least partially into the shank to define a shank inner surface. An integral impingement cooling structure is within the radially extending chamber. The integral impingement cooling structure allows an exterior surface of a hollow body thereof to be uniformly spaced from the airfoil inner surface despite the curvature of the chamber. The turbine rotor blade has impingement cooling throughout the blade.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: February 8, 2022
    Assignee: General Electric Company
    Inventors: Zachary John Snider, Brad Wilson VanTassel, Jeffrey Clarence Jones
  • Publication number: 20210348513
    Abstract: A conforming coating mask is used with a turbine component having a plurality of cooling holes. The conforming coating mask includes at least two anchors; a plurality of radial mask strips integrally formed with and extending between each of the at least two anchors; and at least one coating mask securing insert. Each at least one coating mask securing insert integrally formed with a respective at least one radial mask strip; wherein the plurality of radial mask strips align with and cover the plurality of cooling holes.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: Jeffrey Clarence Jones, Zachary John Snider, Christopher Donald Porter, Brad Wilson VanTassel
  • Patent number: 11162432
    Abstract: A vane of a turbine system is provided. The vane includes: an internal cavity configured to receive a flow of cooling fluid; a variable thickness wall adjacent the internal cavity; and an impingement plate separating the variable thickness wall from the internal cavity, the impingement plate including a plurality of apertures for directing the cooling fluid into an impingement cavity and against the variable thickness wall, wherein the impingement plate is configured to follow a contour of the variable thickness wall.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: November 2, 2021
    Assignee: General Electric Company
    Inventors: Travis J Packer, Brad Wilson VanTassel, William Scott Zemitis
  • Publication number: 20210308944
    Abstract: A mask is provided for an additively manufactured part including a plurality of spaced openings in a surface of the part. The mask is made with the part and includes an attachment ligament configured to integrally couple to the part between the openings in a cantilever fashion. First and second cover members include a proximal ends integrally coupled to the attachment ligament and distal ends extending at least partially over a respective portions of the plurality of openings. A detachment member extends from each of the first and second cover members. The attachment ligament is the sole connection to the part. The mask may have an umbrella shape in cross-section.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Travis J Packer, Brad Wilson VanTassel, Christopher Donald Porter, Jonathan Matthew Lomas, Glenn Curtis Taxacher
  • Patent number: 11085374
    Abstract: An impingement insert for HGP component may include a hollow body having a longitudinal extent, an exterior surface and an interior surface. The hollow body may include a first side wall, a second side wall contiguous with the first side wall at a first end of each, the second side wall is flexibly movable relative to the first side wall. A spring element is contiguous with a second end of each of the first side wall and the second side wall, and extends along at least a portion of the longitudinal extent of the hollow body and into the hollow body between the first side wall and the second side wall. The spring element biases the side walls to an expanded position from a compressed position of the hollow body. Cooling passages pass between the exterior surface and the interior surface of the hollow body in both side walls.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: August 10, 2021
    Assignee: General Electric Company
    Inventors: Travis J Packer, Brad Wilson VanTassel
  • Patent number: 11077527
    Abstract: A component has an edge extending in a first direction. The component includes a filler disposed in the component. The filler has at least a first portion and a second portion. The first portion extends in a second direction from the edge into the component. The second portion of the filler extends from the first portion in a third direction. The second direction is substantially orthogonal to the first direction.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 3, 2021
    Assignee: General Electric Company
    Inventors: Cem Murat Eminoglu, Cody Jermaine Ford, Brad Wilson Vantassel
  • Publication number: 20210222565
    Abstract: A turbine rotor blade is additively manufactured and includes an airfoil body with a radially extending chamber for receiving a coolant flow, a tip end at a radial outer end of the airfoil body, and a shank at a radial inner end of the airfoil body. The radially extending chamber extends at least partially into the shank to define a shank inner surface. An integral impingement cooling structure is within the radially extending chamber. The integral impingement cooling structure allows an exterior surface of a hollow body thereof to be uniformly spaced from the airfoil inner surface despite the curvature of the chamber. The turbine rotor blade has impingement cooling throughout the blade.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventors: Zachary John Snider, Brad Wilson VanTassel, Jeffrey Clarence Jones
  • Publication number: 20210164397
    Abstract: An impingement insert for HGP component may include a hollow body having a longitudinal extent, an exterior surface and an interior surface. The hollow body may include a first side wall, a second side wall contiguous with the first side wall at a first end of each, the second side wall is flexibly movable relative to the first side wall. A spring element is contiguous with a second end of each of the first side wall and the second side wall, and extends along at least a portion of the longitudinal extent of the hollow body and into the hollow body between the first side wall and the second side wall. The spring element biases the side walls to an expanded position from a compressed position of the hollow body. Cooling passages pass between the exterior surface and the interior surface of the hollow body in both side walls.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Inventors: Travis J Packer, Brad Wilson VanTassel