Patents by Inventor Braden Leigh

Braden Leigh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084163
    Abstract: Durable, anti-fouling, crosslinked zwitterionic coatings that are grafted to the surface of a substrate through covalent bonding are disclosed. When exposed to a light source, zwitterionic monomers react with a crosslinker and with activated radicals at the surface of the substrate, simultaneously forming the crosslinked zwitterionic coating and anchoring it to the surface of the substrate. Photomasking techniques can be used to micropattern the zwitterionic coatings. The zwitterionic coatings can be applied to a variety of substrates, including medical devices and systems.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Elise Lin Cheng, C. Allan Guymon, Marlan R. Hansen, Braden Leigh
  • Patent number: 11814526
    Abstract: Durable, anti-fouling, crosslinked zwitterionic coatings that are grafted to the surface of a substrate through covalent bonding are disclosed. When exposed to a light source, zwitterionic monomers react with a crosslinker and with activated radicals at the surface of the substrate, simultaneously forming the crosslinked zwitterionic coating and anchoring it to the surface of the substrate. Photomasking techniques can be used to micropattern the zwitterionic coatings. The zwitterionic coatings can be applied to a variety of substrates, including medical devices and systems.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: November 14, 2023
    Assignee: University of Iowa Research Foundation
    Inventors: Elise Lin Cheng, C. Allan Guymon, Marian R. Hansen, Braden Leigh
  • Publication number: 20230106294
    Abstract: Durable, anti-fouling, crosslinked zwitterionic coatings that are grafted to the surface of a substrate through covalent bonding are disclosed. When exposed to a light source, zwitterionic monomers react with a crosslinker and with activated radicals at the surface of the substrate, simultaneously forming the crosslinked zwitterionic coating and anchoring it to the surface of the substrate. Photomasking techniques can be used to micropattern the zwitterionic coatings. The zwitterionic coatings can be applied to a variety of substrates, including medical devices and systems.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Elise Lin Cheng, C. Allan Guymon, Marlan R. Hansen, Braden Leigh
  • Patent number: 11525069
    Abstract: Durable, anti-fouling, crosslinked zwitterionic coatings that are grafted to the surface of a substrate through covalent bonding are disclosed. When exposed to a light source, zwitterionic monomers react with a crosslinker and with activated radicals at the surface of the substrate, simultaneously forming the crosslinked zwitterionic coating and anchoring it to the surface of the substrate. Photomasking techniques can be used to micropattern the zwitterionic coatings. The zwitterionic coatings can be applied to a variety of substrates, including medical devices and systems.
    Type: Grant
    Filed: June 24, 2017
    Date of Patent: December 13, 2022
    Assignee: UNIVERSITY OF IOWA RESEARCH FOUNDATION
    Inventors: Elise Lin Cheng, C. Allan Guymon, Marian R. Hansen, Braden Leigh
  • Publication number: 20200308440
    Abstract: Durable, anti-fouling, crosslinked zwitterionic coatings that are grafted to the surface of a substrate through covalent bonding are disclosed. When exposed to a light source, zwitterionic monomers react with a crosslinker and with activated radicals at the surface of the substrate, simultaneously forming the crosslinked zwitterionic coating and anchoring it to the surface of the substrate. Photomasking techniques can be used to micropattern the zwitterionic coatings. The zwitterionic coatings can be applied to a variety of substrates, including medical devices and systems.
    Type: Application
    Filed: June 24, 2017
    Publication date: October 1, 2020
    Inventors: Elise Lin Cheng, C. Allan Guymon, Marlan R. Hansen, Braden Leigh