Patents by Inventor Bradley A. Orner
Bradley A. Orner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
SIGNAL PROPAGATION SIMULATION TOOL INCLUDING VIRTUAL OPTICAL PROBING AND/OR BIDIRECTIONAL SIMULATION
Publication number: 20240402486Abstract: Systems and methods for designing photonic integrated circuits (PICs) include a simulation program with virtual optical probing functions and, optionally, bidirectional optical signal propagation simulation. For probing, a processor receives an output expression specifying a virtual optical probing function (e.g., for power in dBm, etc.) and a net within a PIC design. If different simulation types are enabled, the expression specifies simulation type. If bidirectionality is enabled, the expression specifies the forward or reverse direction. In response, the processor accesses the PIC design and results of simulation(s) thereof and calculates and outputs an optical signal parameter value for the specified net.Type: ApplicationFiled: May 30, 2023Publication date: December 5, 2024Inventors: Abdelsalam Aboketaf, Frederick G. Anderson, Yusheng Bian, Petar I Todorov, Bradley A. Orner -
Publication number: 20240273275Abstract: Disclosed are a process design kit (PDK) product and also a design system and a design method that employ the PDK product to layout IC designs including 3D IC designs. The PDK product includes a storage medium and a PDK, including a library of cells, stored thereon. The cells can include parameterized cells (pcells) representing various IC components. The pcells are parameter-customizable and one or more of the pcells are also layout configuration-customizable. Each parameter and layout configuration-customizable pcell includes customization script, which is executable by a processor in response to inputs specific to that pcell and which can cause the processor to place an instance of that pcell with customized parameters in a 3D IC layout according to a selected layout configuration option (e.g., a single-chip layout configuration option or a multi-chip layout configuration option).Type: ApplicationFiled: February 15, 2023Publication date: August 15, 2024Inventors: Manubhai Patel Jignesh, James A. Culp, Bradley A. Orner, Haritez Narisetty
-
Patent number: 8987067Abstract: Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.Type: GrantFiled: March 1, 2013Date of Patent: March 24, 2015Assignee: International Business Machines CorporationInventors: Robert L. Barry, Phillip F. Chapman, Jeffrey P. Gambino, Michael L. Gautsch, Mark D. Jaffe, Kevin N. Ogg, Bradley A. Orner
-
Publication number: 20150035112Abstract: Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.Type: ApplicationFiled: October 22, 2014Publication date: February 5, 2015Inventors: Robert L. BARRY, Phillip F. CHAPMAN, Jeffrey P. GAMBINO, Michael L. GAUTSCH, Mark D. JAFFE, Kevin N. OGG, Bradley A. ORNER
-
Patent number: 8853043Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.Type: GrantFiled: September 11, 2012Date of Patent: October 7, 2014Assignee: International Business Machines CorporationInventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
-
Publication number: 20140246752Abstract: Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.Type: ApplicationFiled: March 1, 2013Publication date: September 4, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Robert L. Barry, Phillip F. Chapman, Jeffrey P. Gambino, Michael L. Gautsch, Mark D. Jaffe, Kevin N. Ogg, Bradley A. Orner
-
Publication number: 20140239498Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.Type: ApplicationFiled: August 9, 2012Publication date: August 28, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Liu, James S. Nakos, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
-
Patent number: 8592293Abstract: A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.Type: GrantFiled: February 16, 2011Date of Patent: November 26, 2013Assignee: International Business Machines CorporationInventors: Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel
-
Patent number: 8525293Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.Type: GrantFiled: May 15, 2012Date of Patent: September 3, 2013Assignee: International Business Machines CorporationInventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
-
Publication number: 20130005108Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.Type: ApplicationFiled: September 11, 2012Publication date: January 3, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
-
Patent number: 8338265Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.Type: GrantFiled: November 12, 2008Date of Patent: December 25, 2012Assignee: International Business Machines CorporationInventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Liu, James S. Nakos, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
-
Publication number: 20120319233Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.Type: ApplicationFiled: May 15, 2012Publication date: December 20, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
-
Patent number: 8299500Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.Type: GrantFiled: August 23, 2005Date of Patent: October 30, 2012Assignee: International Business Machines CorporationInventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
-
Patent number: 8288244Abstract: A method for forming a lateral passive device including a dual annular electrode is disclosed. The annular electrodes formed from the method include an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced.Type: GrantFiled: July 13, 2010Date of Patent: October 16, 2012Assignee: International Business Machines CorporationInventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
-
Patent number: 8236662Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.Type: GrantFiled: November 18, 2010Date of Patent: August 7, 2012Assignee: International Business Machines CorporationInventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
-
Patent number: 8217497Abstract: The embodiments of the invention provide a structure, method, etc. for a fin differential MOS varactor diode. More specifically, a differential varactor structure is provided comprising a substrate with an upper surface, a first vertical anode plate, and a second vertical anode plate electrically isolated from the first vertical anode plate. Moreover, a semiconductor fin comprising a cathode is between the first vertical anode plate and the second vertical anode plate, wherein the semiconductor fin, the first vertical anode plate, and the second vertical anode plate are each positioned over the substrate and perpendicular to the upper surface of the substrate.Type: GrantFiled: January 17, 2007Date of Patent: July 10, 2012Assignee: International Business Machines CorporationInventors: Bradley A. Orner, Edward J. Nowak, Robert M. Rassel
-
Patent number: 8105924Abstract: A far subcollector, or a buried doped semiconductor layer located at a depth that exceeds the range of conventional ion implantation, is formed by ion implantation of dopants into a region of an initial semiconductor substrate followed by an epitaxial growth of semiconductor material. A reachthrough region to the far subcollector is formed by outdiffusing a dopant from a doped material layer deposited in the at least one deep trench that adjoins the far subcollector. The reachthrough region may be formed surrounding the at least one deep trench or only on one side of the at least one deep trench. If the inside of the at least one trench is electrically connected to the reachthrough region, a metal contact may be formed on the doped fill material within the at least one trench. If not, a metal contact is formed on a secondary reachthrough region that contacts the reachthrough region.Type: GrantFiled: January 21, 2010Date of Patent: January 31, 2012Assignee: International Business Machines CorporationInventors: Bradley A. Orner, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
-
Patent number: 8030167Abstract: Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.Type: GrantFiled: August 15, 2007Date of Patent: October 4, 2011Assignee: International Business Machines CorporationInventors: Douglas D. Coolbaugh, Louis D. Lanzerotti, Bradley A. Orner, Jay S. Rascoe, David C. Sheridan, Stephen A. St. Onge
-
Publication number: 20110143494Abstract: A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.Type: ApplicationFiled: February 16, 2011Publication date: June 16, 2011Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Jeffrey B. JOHNSON, Xuefeng LIU, Bradley A. ORNER, Robert M. RASSEL
-
Patent number: 7936041Abstract: The structure for millimeter-wave frequency applications, includes a Schottky barrier diode (SBD) with a cutoff frequency (FC) above 1.0 THz formed on a SiGe BiCMOS wafer. A method is also contemplated for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.Type: GrantFiled: September 12, 2007Date of Patent: May 3, 2011Assignee: International Business Machines CorporationInventors: Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel