Patents by Inventor Bradley C. Liang

Bradley C. Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974844
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: May 7, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Jaeho Kim, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20240057905
    Abstract: A system to automatically detect at least one physiological state is disclosed. The system includes a single probe for insertion within a subject that has an analyte sensor array for continuous monitoring of at least glucose and a second analyte. The system further includes an electronics module that includes a power supply, a processor, memory and a bi-directional communications module. When the electronics module is coupled with the analyte sensor array the power supply delivers power to the analyte sensor array and the processor. The processor analyzing glucose and the second analyte data to detect a first physiological state from a plurality of physiological states.
    Type: Application
    Filed: February 24, 2022
    Publication date: February 22, 2024
    Applicant: PercuSense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C LIANG, ELLEN BOWMAN, KATHERINE WOLFE
  • Publication number: 20240023847
    Abstract: In one embodiment, a sensor is disclosed that includes a first conductive substrate coupled to, and electrically isolated from, a second conductive substrate. The sensor includes a first electrode trace within the first conductive substrate with a plurality of first working electrode openings. The sensor also includes a second electrode trace within the first conductive substrate with a plurality of second working electrode openings. Additionally a first transport material is included that covers the plurality of first working electrode openings and a second transport material that covers the plurality of second working electrode openings. A third transport material covers, and forms a barrier between the first and the second transport material. The sensor additionally includes a counter-reference electrode that is formed on the second conductive substrate.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley C. Liang, Katherine Wolfe
  • Publication number: 20230360799
    Abstract: A method for retrospective calibration of a glucose sensor uses stored values of measured working electrode current (Isig) to calculate a final sensor glucose (SG) value retrospectively. The Isig values may be preprocessed, discrete wavelet decomposition applied. At least one machine learning model, such as, e.g., Genetic Programing (GP) and Regression Decision Tree (DT), may be used to calculate SG values based on the Isig values and the discrete wavelet decomposition. Other inputs may include, e.g., counter electrode voltage (Vcntr) and Electrochemical Impedance Spectroscopy (EIS) data. A plurality of machine learning models may be used to generate respective SG values, which are then fused to generate a fused SG. Fused SG values may be filtered to smooth the data, and blanked if necessary.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 9, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Benyamin Grosman, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai, Andrea Varsavsky, Jeffrey Nishida
  • Publication number: 20230263657
    Abstract: A temperature-management device comprises a wearable sleeve including a foot portion configured to cover at least a portion of a sole of a foot of a patient, a calf portion configured to cover at least a portion of a calf of the patient, the calf portion having one or more compression bladders associated therewith, and a popliteal fossa portion configured to cover at least a portion of a popliteal fossa of the patient. The temperature-management device further comprises a heater assembly configured to be secured to the wearable sleeve, the heater assembly including a foot heating pad, a popliteal fossa heating pad, and a physical connector extending between the foot heating pad and the popliteal fossa heating pad.
    Type: Application
    Filed: April 5, 2023
    Publication date: August 24, 2023
    Inventors: Douglas M. PATTON, Bradley C. LIANG, Abhinav RAMANI, Brian T. KANNARD, Peter Luke SANTA MARIA, Morgan Taylor MCKEOWN
  • Publication number: 20230119049
    Abstract: An electrode measuring the presence of an analyte is described as one embodiment. The electrode includes a working conductor with an electrode reactive surface and a first reactive chemistry that is responsive to the analyte. The electrode further includes a first transport material that enables flux of the first analyte to the first reactive chemistry and a second transport material that supplies a reactant to the first reactive chemistry. Wherein the first reactive chemistry does not contact the electrode reactive surface while at least partially shadowing a portion of the electrode reactive surface.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Applicant: PercuSense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C. LIANG, KATHERINE WOLFE, ELLEN MESSER, SHAUN PENDO
  • Patent number: 11622883
    Abstract: Systems for maintaining normothermia in a patient via compression and warming are disclosed and include a first warming element configured to apply warming to the popliteal fossa, a second warming element configured to apply warming to the sole of the foot, and a compression element configured to apply compression to the calf.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 11, 2023
    Assignee: Flotherm, Inc.
    Inventors: Bradley C Liang, Abhinav Ramani, Brian T. Kannard, Peter Luke Santa Maria, Scott Janis, Colton Sanford, Isamu Taguchi
  • Publication number: 20230075014
    Abstract: A biosensor assembly that measures multiple physical parameters is disclosed. The biosensor assembly includes a first implantable probe and a first skin contacting electrode. Wherein a first physiological parameter is measured between the first implantable probe and the first skin contactable electrode.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 9, 2023
    Applicant: PercuSense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C LIANG, ELLEN MESSER, KATHERINE WOLFE
  • Publication number: 20230035020
    Abstract: A heating system comprises a wearable sleeve, a first heating pad associated with a first portion of the wearable sleeve, a second heating pad associated with a second portion of the wearable sleeve, one or more temperature sensors associated with the wearable sleeve, and control circuitry communicatively coupled to the first heating pad, the second heating pad, and the one or more temperature sensors. The control circuitry is configured to receive one or more temperature signals from the one or more temperature sensors, determine a temperature associated with a patient based on the one or more temperature signals, determine that the temperature is less than a target temperature value, and at least partly in response to said determining that the temperature is less than the target temperature value, activate at least one of the first heating pad or the second heating pad.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Inventors: Bradley C. LIANG, Abhinav RAMANI, Brian T. KANNARD, Peter Luke SANTA MARIA
  • Publication number: 20230017510
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Application
    Filed: August 22, 2022
    Publication date: January 19, 2023
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Patent number: 11529053
    Abstract: A biosensor assembly that measures multiple physical parameters is disclosed. The biosensor assembly includes a first implantable probe and a first skin contacting electrode. Wherein a first physiological parameter is measured between the first implantable probe and the first skin contactable electrode.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: December 20, 2022
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley C Liang, Ellen Messer, Katherine Wolfe
  • Patent number: 11445952
    Abstract: Electrochemical impedance spectroscopy (EIS) may be used in conjunction with continuous glucose monitoring (CGM) to enable identification of valid and reliable sensor data, as well implementation of Smart Calibration algorithms.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: September 20, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Keith Nogueira, Taly G. Engel, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Mike C. Liu, Andy Y. Tsai
  • Publication number: 20220262475
    Abstract: Disclosed herein are techniques related to adaptive signal processing. The techniques may involve: obtaining a plurality of unfiltered measurement values based on signals generated by a sensor; determining a plurality of filtered measurement values based on the plurality of unfiltered measurement values; determining, based on the plurality of filtered measurements, a first derivative metric for a current filtered measurement of the plurality of filtered measurements and a second derivative metric for the current filtered measurement; determining an output filtered measurement indicative of a physiological condition of a user based at least in part on the current filtered measurement, the first derivative metric, the second derivative metric, and a previous output measurement; and outputting the output filtered measurement.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Keith Nogueira, Pratik J. Agrawal, Brian T. Kannard, Xiaolong Li, Bradley C. Liang, Rajiv Shah, Yuxiang Zhong
  • Publication number: 20220183598
    Abstract: A working electrode measuring the presence of an analyte is described as one embodiment. The working electrode includes a working conductor with a reactive surface that is operated at a first potential. The working electrode further includes a first transport material with properties that enable analyte flux to the reactive surface. Additionally, the working electrode has a second transport material with properties that enable reactant flux to the reactive surface, wherein the analyte flux and the reactant flux are in dissimilar directions.
    Type: Application
    Filed: February 28, 2022
    Publication date: June 16, 2022
    Applicant: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley C. Liang, Katherine Wolfe, Ellen K. Messer, Shaun M. Pendo
  • Publication number: 20220133179
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: January 10, 2022
    Publication date: May 5, 2022
    Inventors: Ning Yang, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Patent number: 11284816
    Abstract: A system to automatically detect at least one physiological state is disclosed. The system includes a single probe for insertion within a subject that has an analyte sensor array for continuous monitoring of at least glucose and a second analyte. The system further includes an electronics module that includes a power supply, a processor, memory and a bi-directional communications module. When the electronics module is coupled with the analyte sensor array the power supply delivers power to the analyte sensor array and the processor. The processor analyzing glucose and the second analyte data to detect a first physiological state from a plurality of physiological states.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 29, 2022
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Bradley C Liang, Ellen Bowman, Katherine Wolfe
  • Patent number: 11234624
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: February 1, 2022
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Publication number: 20210236065
    Abstract: An apparatus for early detection of sepsis in a host is disclosed. The apparatus includes a first sensor to directly measure a glucose level, a second sensor to directly measure a lactate level and a third sensor to directly measure a tissue oxygen level. The first sensor, the second sensor, and the third sensor all being inserted at a single point of entry in a subcutaneous space of the host such that a predetermined correlation between the glucose level, lactate level, and tissue oxygen level signals conditions related to sepsis.
    Type: Application
    Filed: November 21, 2020
    Publication date: August 5, 2021
    Applicant: Percusense, Inc.
    Inventors: RAJIV SHAH, BRADLEY C LIANG, BAHAR SUTORIUS, KATHERINE WOLFE, ELLEN MESSER, SHAUN PENDO
  • Patent number: 11020028
    Abstract: The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: June 1, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Megan E. Little, Katherine T. Wolfe, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Patent number: 10845330
    Abstract: A physiological characteristic sensor, a method for forming a physiological characteristic sensor, and a method for forming a platinum deposit having a rough surface are presented here. The method for forming a physiological characteristic sensor includes immersing a sensor electrode in a platinum electrolytic bath. Further, the method includes performing an electrodeposition process by sequentially applying a pulsed signal to the sensor electrode, wherein the pulsed signal includes a repeated cycle of a first current and a second current different from the first current, and applying a non-pulsed continuous signal to the sensor electrode, wherein the non-pulsed continuous signal includes a non-repeated application of a third current, to form a platinum deposit on the sensor electrode.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: November 24, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Steven C. Jacks, Raghavendhar Gautham, Bradley C. Liang, Megan E. Little, Daniel E. Pesantez, Rajiv Shah