Patents by Inventor Bradley Charles Ashmore

Bradley Charles Ashmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11360114
    Abstract: A monitoring device includes a sensor module disposed between an aeroshell and a cavity assembly. A surface of the aeroshell and a surface of the cavity assembly may form a flow-facing surface of the monitoring device. A junction area on the flow-facing surface within which the aeroshell abuts the cavity assembly may be a smooth surface to minimize the disruption to the surrounding flow of fluid. The sensor module may sample the absolute pressure from ports distributed about the flow-facing surface. The absolute pressure measurements may be used to compute the velocity of the fluid flow, including speed and/or direction. The monitoring device may be powered by inductively received energy or harvested energy. In one variant of the monitoring device, the monitoring device may be constructed from an electrically coupled mosaic of flexible thin-profile tiles, each of which may be responsible for one functional aspect of the monitoring device.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: June 14, 2022
    Inventor: Bradley Charles Ashmore
  • Patent number: 11287305
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: March 29, 2022
    Inventor: Bradley Charles Ashmore
  • Publication number: 20220026459
    Abstract: A monitoring device includes a sensor module disposed between an aeroshell and a cavity assembly. A surface of the aeroshell and a surface of the cavity assembly may form a flow-facing surface of the monitoring device. A junction area on the flow-facing surface within which the aeroshell abuts the cavity assembly may be a smooth surface to minimize the disruption to the surrounding flow of fluid. The sensor module may sample the absolute pressure from ports distributed about the flow-facing surface. The absolute pressure measurements may be used to compute the velocity of the fluid flow, including speed and/or direction. The monitoring device may be powered by inductively received energy or harvested energy. In one variant of the monitoring device, the monitoring device may be constructed from an electrically coupled mosaic of flexible thin-profile tiles, each of which may be responsible for one functional aspect of the monitoring device.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Inventor: Bradley Charles Ashmore
  • Patent number: 11181544
    Abstract: A monitoring device includes a sensor module disposed between an aeroshell and a cavity assembly. A surface of the aeroshell and a surface of the cavity assembly may form a flow-facing surface of the monitoring device. A junction area on the flow-facing surface within which the aeroshell abuts the cavity assembly may be a smooth surface to minimize the disruption to the surrounding flow of fluid. The sensor module may sample the absolute pressure from ports distributed about the flow-facing surface. The absolute pressure measurements may be used to compute the velocity of the fluid flow, including speed and/or direction. The monitoring device may be powered by inductively received energy or harvested energy. In one variant of the monitoring device, the monitoring device may be constructed from an electrically coupled mosaic of flexible thin-profile tiles, each of which may be responsible for one functional aspect of the monitoring device.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: November 23, 2021
    Inventor: Bradley Charles Ashmore
  • Publication number: 20210263063
    Abstract: A monitoring device includes a sensor module disposed between an aeroshell and a cavity member. A surface of the aeroshell and a surface of the cavity assembly may form a flow-facing surface of the monitoring device. A junction area on the flow-facing surface within which the aeroshell abuts the cavity assembly may be a smooth surface to minimize the disruption to the surrounding flow of fluid. The sensor module may sample the absolute pressure from ports distributed about the flow-facing surface. The absolute pressure measurements may be used to compute the velocity of the fluid flow, including speed and/or direction. The monitoring device may be powered by inductively received energy or harvested energy. In one variant of the monitoring device, the monitoring device may be constructed from an electrically coupled mosaic of flexible thin-profile tiles, each of which may be responsible for one functional aspect of the monitoring device.
    Type: Application
    Filed: February 19, 2021
    Publication date: August 26, 2021
    Inventor: Bradley Charles Ashmore
  • Patent number: 10884013
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: January 5, 2021
    Inventor: Bradley Charles Ashmore
  • Publication number: 20200340851
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventor: Bradley Charles Ashmore
  • Patent number: 10746588
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: August 18, 2020
    Inventor: Bradley Charles Ashmore
  • Publication number: 20200200790
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Inventor: Bradley Charles Ashmore
  • Patent number: 10598683
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: March 24, 2020
    Inventor: Bradley Charles Ashmore
  • Publication number: 20190271716
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 5, 2019
    Inventor: Bradley Charles Ashmore
  • Patent number: 10324104
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: June 18, 2019
    Inventor: Bradley Charles Ashmore
  • Publication number: 20190178703
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventor: Bradley Charles Ashmore
  • Patent number: 10267670
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: April 23, 2019
    Inventor: Bradley Charles Ashmore
  • Patent number: 10267671
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 23, 2019
    Inventor: Bradley Charles Ashmore
  • Publication number: 20180106663
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventor: Bradley Charles Ashmore
  • Publication number: 20180106662
    Abstract: A pressure-sensitive device and a computing device are configured to register various steps of a meal lifecycle, including one or more of food purchasing, meal preparation, the serving and consumption of a meal, use of leftovers, management of food inventory, the transferring of a food item from one container to another, the transferring of a food item into a container, the transferring of a portion of a food item into a container. A food item may be automatically identified based on a weight and footprint of the food item. In some instances, a database associates a food item with multiple footprints such that a food item may be identified regardless of its orientation on the pressure-sensitive device.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 19, 2018
    Inventor: Bradley Charles Ashmore
  • Publication number: 20170192031
    Abstract: A monitoring device includes a cavity assembly with a plurality of cavities. Openings of the plurality of cavities are distributed about a flow-facing surface of the cavity assembly. A gas pressure sensor is disposed within each of the cavities, and is configured to measure an absolute pressure of a gas flow which flows past the monitoring device. Gas pressure measurements from the pressure sensors may be used to determine a flow speed and a flow direction of the gas flow. More specifically, a mapping may be used to map the logarithm of the difference between the maximum and minimum pressures to a flow speed. Further, a lookup table may be used to map a pattern of pressure measurements to a flow direction.
    Type: Application
    Filed: January 3, 2017
    Publication date: July 6, 2017
    Inventor: Bradley Charles Ashmore
  • Publication number: 20150017619
    Abstract: Recording and communicating human body motion may be provided. One or more wearable device may each include a set of sensors for characterizing motion, a set of vibrating elements placed at different locations, and a radio. Data may be received from the wearable devices and stored at a mobile device. Such data may characterize a set of motions performed over a period of recording time by a recording user wearing the registered wearable devices. When a request for playback of the recorded motions is received at the mobile device from a user wearing the registered wearable devices, it may be determined that the requesting user has different dimensions than the recording user. As such, the stored data may be adjusted based on the difference in dimensions. The requesting user may then perform the motions and be evaluated in real-time to identify a deviation between the adjusted and the real-time data.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 15, 2015
    Inventor: Bradley Charles Ashmore