Patents by Inventor Bradley Jonathan Luff

Bradley Jonathan Luff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703598
    Abstract: A LIDAR system includes a LIDAR chip configured to output a LIDAR output signal. The LIDAR chip includes a redirection component and alternate waveguides. The redirection component receives an outgoing LIDAR signal from any one of multiple alternate waveguides. The LIDAR output signal includes light from the outgoing LIDAR signal. A direction that the LIDAR output signal travels away from the LIDAR chip is a function of the alternate waveguide from which the redirection component receives the outgoing LIDAR signal.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 18, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11698448
    Abstract: The LIDAR system includes a first transform component configured to perform a complex mathematical transform on first signals. The LIDAR system also includes a second transform component configured to perform a real mathematical transform on second signals. Electronics are configured to use an output of the first transform component in combination with an output of the second transformation component to generate LIDAR data. The electronics are further configured to use a peak in the output of the first transform component to identify the peak in the output of the second transform component that is located at the beat frequency of the second signals.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: July 11, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11681021
    Abstract: A LIDAR system includes an emitter head configured to receive LIDAR output signals from one or more LIDAR chips and to output head output signals that each includes light from one of the LIDAR output signals. The emitter head is movable relative to the one or more LIDAR chips. The one or more LIDAR chips are configured to receive LIDAR input signals that each includes light from one of the head output signals. The LIDAR input signals include LIDAR data indicating the distance and/or radial velocity between a LIDAR chip and an object.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 20, 2023
    Assignee: SiLC Technologies. Inc.
    Inventors: Mehdi Asghari, Bradley Jonathan Luff
  • Patent number: 11650317
    Abstract: A LIDAR system includes a light source that outputs an outgoing LIDAR signal that includes multiple different channels. The LIDAR system also generate multiple composite light signals that each carries a signal couple and are each associated with a different one of the channels. A signal couple includes a reference signal and an associated comparative signal. The comparative signals each include light from the outgoing LIDAR signal that has been reflected by one or more objects located outside of the LIDAR system. The reference signals also include light from the outgoing LIDAR signal but also exclude light that has been reflected by any object located outside of the LIDAR system. There is a frequency differential between a frequency of the reference signal and a frequency of the associated comparative signal. The frequency differential includes a contribution from a frequency offset that is induced by electronics.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 16, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Majid Boloorian, Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11635491
    Abstract: A LIDAR system includes a LIDAR chip that generates a LIDAR output signal. The LIDAR chip includes a utility waveguide configured to carry one or more light signals selected from an outgoing LIDAR signal and an incoming LIDAR signal. The system also includes an amplifier that has an amplifier waveguide with a first facet and a second facet. The amplifier being positioned such that the first facet is optically aligned with a facet of the utility waveguide but the second facet is not optically aligned with any waveguide.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: April 25, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11624810
    Abstract: Multiple LIDAR output signals are generated and are concurrently directed to the same sample region in a field of view. The LIDAR output signals have one or more optical diversities selected from a group consisting of wavelength diversity, polarization diversity, and diversity of an angle of incidence of the LIDAR output signal relative to the sample region.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: April 11, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Bradley Jonathan Luff, Dazeng Feng, Mehdi Asghari
  • Patent number: 11624807
    Abstract: A LIDAR system includes a LIDAR chip configured to generate a LIDAR output signal that exits from a waveguide on the LIDAR chip. The system also includes optics that receive the LIDAR output signal from the waveguide. Electronics are configured to tune an image distance at which the LIDAR output signal is focused after exiting from the optics.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: April 11, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Bradley Jonathan Luff, Dazeng Feng, Mehdi Asghari
  • Patent number: 11624943
    Abstract: A LIDAR system includes a light source configured to output a source signal. The LIDAR chip is also configured to output a LIDAR output signal that exits from the LIDAR chip. The LIDAR system also includes an isolator adapter that includes an optical isolator configured to receive an adapter signal. The adapter signal includes light that is from the source signal and that has exited from the LIDAR chip before being received by the optical isolator. The isolator is configured to output light from the adapter signal in an isolator output signal. Additionally, the LIDAR output signal includes light from the isolator output signal.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: April 11, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Bradley Jonathan Luff, Monish Sharma
  • Publication number: 20230069201
    Abstract: A LIDAR system has a beam steering mechanism and a signal steering mechanism that are each configured to steer within a field of view a system output signal that is output from the LIDAR system. A path of system output signal in the field of view has a contribution from the beam steering mechanism and the second mechanism. The contribution of the beam steering mechanism to the path is movement of the system output signal on a two-dimensional path back and forth across the field of view. The contribution of the signal steering mechanism to the path is movement of the system output signal transverse to the two-dimensional path contribution of the provided by the beam steering mechanism.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Inventors: Mehdi Asghari, Nirmal Warke, Prakash Koonath, Bradley Jonathan Luff
  • Patent number: 11581703
    Abstract: Systems and methods described herein are directed to optical light sources, such as an external cavity laser (ECL) with an active phase shifter. The system may include control circuitry for controlling one or more parameters associated with the active phase shifter. The phase shifter may be a p-i-n phase shifter. The control circuitry may cause variation in a refractive index associated with the phase shifter, thereby varying a lasing frequency of the ECL. The ECL may be configured to operate as a light source for a light detection and ranging (LIDAR) system based on generating frequency modulated light signals. In some embodiments, the ECL may generate an output LIDAR signal with alternating segments of increasing and decreasing chirp frequencies. The ECL may exhibit increased stability and improved chirp linearities with less dependence on ambient temperature fluctuations.
    Type: Grant
    Filed: September 20, 2020
    Date of Patent: February 14, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Amir Ali Tavallaee, Behnam Behroozpour, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11579305
    Abstract: A LIDAR system includes a LIDAR assembly configured to output a LIDAR output signal that carries multiple different channels. A directional component has an optical grating that receives the LIDAR output signal from the LIDAR assembly. The directional component demultiplexes the LIDAR output signal into multiple LIDAR output channels that each carries a different one of the channels. The directional component is configured to steer a direction that the LIDAR output channels travel away from the LIDAR system.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: February 14, 2023
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Bradley Jonathan Luff
  • Publication number: 20230040355
    Abstract: A LIDAR system includes a light source configured to output a source signal. The LIDAR chip is also configured to output a LIDAR output signal that exits from the LIDAR chip. The LIDAR system also includes an isolator adapter that includes an optical isolator configured to receive an adapter signal. The adapter signal includes light that is from the source signal and that has exited from the LIDAR chip before being received by the optical isolator. The isolator is configured to output light from the adapter signal in an isolator output signal. Additionally, the LIDAR output signal includes light from the isolator output signal.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 9, 2023
    Inventors: Bradley Jonathan Luff, Monish Sharma
  • Publication number: 20220413224
    Abstract: An on-chip optical switch based on an echelle grating and a phase tuning element is described herein. The phase tuning element may change a refractive index of the material through which an optical signal propagates, thereby causing a change in the angle of propagation of the optical signal. By dynamically tuning the phase change element, the refractive index change may be controlled such that the deviation of the optical signal causes the optical signal to be focused on a particular coupling waveguide out of an array of coupling waveguides. The echelle grating with the active phase change element form a configurable optical switch capable of switching an optical signal between two or more coupling waveguides, that may be respectively connected to different optical signal processing pathways.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Inventors: Shuren Hu, Amir Hanjani, Chen Chen, Mehdi Asghari, Bradley Jonathan Luff
  • Patent number: 11536805
    Abstract: An optical system has a LIDAR chip that includes a switch configured to direct an outgoing LIDAR signal to one of multiple different alternate waveguides. The system also includes a redirection component configured to receive the outgoing LIDAR signal from any one of the alternate waveguides. The redirection component is also configured to redirect the received outgoing LIDAR signal such that a direction that the outgoing LIDAR signal travels away from the redirection component changes in response to changes in the alternate waveguide to which the optical switch directs the outgoing LIDAR signal.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 27, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11531090
    Abstract: The LIDAR chip includes a utility waveguide that guides an outgoing LIDAR signal to a facet through which the outgoing LIDAR signal exits from the chip. The chip also includes a control branch that removes a portion of the outgoing LIDAR signal from the utility waveguide. The control branch includes a control light sensor that receives a light signal that includes light from the removed portion of the outgoing LIDAR signal. The chip also includes a data branch that removes a second portion of the outgoing LIDAR signal from the utility waveguide. The data branch includes a light-combining component that combines a reference light signal that includes light from the second portion of the outgoing LIDAR signal with a comparative light signal that includes light that was reflected off an object located off of the chip.
    Type: Grant
    Filed: June 13, 2020
    Date of Patent: December 20, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11500071
    Abstract: A LIDAR system includes a demultiplexer that separates an outgoing LIDAR signal into multiple LIDAR output signals that each carries a different channel and the different channels are each at a different wavelength. The system also includes a beam distributor that receives each of the LIDAR output signals. The beam distributor directs the received LIDAR output signals such that different LIDAR output signals travel away from the beam distributor in different directions.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: November 15, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Publication number: 20220350023
    Abstract: A LIDAR system has one or more light splitters and multiple light combiners. The LIDAR system also has multiple optical pathways through which light signals travel. The optical pathways include delay pathways that each extends from one of the one or more splitters to one of the light combiners. The optical pathways include expedited pathways that each extends from one of the splitters to one of the light combiners. Each of the light combiners has one of the delay pathways and one of the expedited pathways extending to the light combiner. The delay pathways and the expedited pathways are configured such that the delay pathway to each light combiner is longer than the expedited pathway to the same light combiner. Each of the delay pathways has a common portion and a separated portion. The common portion of each delay pathway is shared by the other delay pathways. In contrast, the separated portion of a delay pathways is not shared with the other delay pathways.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 3, 2022
    Inventors: Chen Chen, Bradley Jonathan Luff
  • Publication number: 20220342048
    Abstract: An optical system has a LIDAR chip that includes a switch configured to direct an outgoing LIDAR signal to one of multiple different alternate waveguides. The system also includes a redirection component configured to receive the outgoing LIDAR signal from any one of the alternate waveguides. The redirection component is also configured to redirect the received outgoing LIDAR signal such that a direction that the outgoing LIDAR signal travels away from the redirection component changes in response to changes in the alternate waveguide to which the optical switch directs the outgoing LIDAR signal.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 27, 2022
    Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11467271
    Abstract: The LIDAR system includes a polarization component configured such that a first light signal traveling through the polarization component along an optical pathway has its polarization angle changed from a first polarization angle to a second polarization angle. The polarization angle is also configured such that a second light signal traveling the optical pathway in a direction that is the reverse of the direction traveled by the first light signal both enters and exits the polarization component in the second polarization angle. The LIDAR system is configured to output a LIDAR output signal that includes light from the first light signal. The LIDAR system is also configured to receive a LIDAR return signal that includes light from the LIDAR output signal after the LIDAR output signal was reflected by an object located outside of the LIDAR assembly.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 11, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Bradley Jonathan Luff
  • Patent number: 11460642
    Abstract: An on-chip optical switch based on an echelle grating and a phase tuning element is described herein. The phase tuning element may change a refractive index of the material through which an optical signal propagates, thereby causing a change in the angle of propagation of the optical signal. By dynamically tuning the phase change element, the refractive index change may be controlled such that the deviation of the optical signal causes the optical signal to be focused on a particular coupling waveguide out of an array of coupling waveguides. The echelle grating with the active phase change element form a configurable optical switch capable of switching an optical signal between two or more coupling waveguides, that may be respectively connected to different optical signal processing pathways.
    Type: Grant
    Filed: January 9, 2021
    Date of Patent: October 4, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Shuren Hu, Amir Hanjani, Chen Chen, Mehdi Asghari, Bradley Jonathan Luff