Patents by Inventor Bradley Orner

Bradley Orner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8987067
    Abstract: Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert L. Barry, Phillip F. Chapman, Jeffrey P. Gambino, Michael L. Gautsch, Mark D. Jaffe, Kevin N. Ogg, Bradley A. Orner
  • Publication number: 20150035112
    Abstract: Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Inventors: Robert L. BARRY, Phillip F. CHAPMAN, Jeffrey P. GAMBINO, Michael L. GAUTSCH, Mark D. JAFFE, Kevin N. OGG, Bradley A. ORNER
  • Patent number: 8853043
    Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
  • Publication number: 20140246752
    Abstract: Disclosed are guard ring structures with an electrically insulated gap in a substrate to reduce or eliminate device coupling of integrated circuit chips, methods of manufacture and design structures. The method includes forming a guard ring structure comprising a plurality of metal layers within dielectric layers. The method further includes forming diffusion regions to electrically insulate a gap in a substrate formed by segmented portions of the guard ring structure.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert L. Barry, Phillip F. Chapman, Jeffrey P. Gambino, Michael L. Gautsch, Mark D. Jaffe, Kevin N. Ogg, Bradley A. Orner
  • Publication number: 20140239498
    Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.
    Type: Application
    Filed: August 9, 2012
    Publication date: August 28, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Liu, James S. Nakos, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Patent number: 8592293
    Abstract: A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel
  • Patent number: 8525293
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Publication number: 20130005108
    Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
  • Patent number: 8338265
    Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: December 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Liu, James S. Nakos, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Publication number: 20120319233
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Application
    Filed: May 15, 2012
    Publication date: December 20, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Patent number: 8299500
    Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
  • Patent number: 8288244
    Abstract: A method for forming a lateral passive device including a dual annular electrode is disclosed. The annular electrodes formed from the method include an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Patent number: 8236662
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Patent number: 8217497
    Abstract: The embodiments of the invention provide a structure, method, etc. for a fin differential MOS varactor diode. More specifically, a differential varactor structure is provided comprising a substrate with an upper surface, a first vertical anode plate, and a second vertical anode plate electrically isolated from the first vertical anode plate. Moreover, a semiconductor fin comprising a cathode is between the first vertical anode plate and the second vertical anode plate, wherein the semiconductor fin, the first vertical anode plate, and the second vertical anode plate are each positioned over the substrate and perpendicular to the upper surface of the substrate.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bradley A. Orner, Edward J. Nowak, Robert M. Rassel
  • Patent number: 8105924
    Abstract: A far subcollector, or a buried doped semiconductor layer located at a depth that exceeds the range of conventional ion implantation, is formed by ion implantation of dopants into a region of an initial semiconductor substrate followed by an epitaxial growth of semiconductor material. A reachthrough region to the far subcollector is formed by outdiffusing a dopant from a doped material layer deposited in the at least one deep trench that adjoins the far subcollector. The reachthrough region may be formed surrounding the at least one deep trench or only on one side of the at least one deep trench. If the inside of the at least one trench is electrically connected to the reachthrough region, a metal contact may be formed on the doped fill material within the at least one trench. If not, a metal contact is formed on a secondary reachthrough region that contacts the reachthrough region.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bradley A. Orner, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
  • Patent number: 8030167
    Abstract: Methods are disclosed for forming a varied impurity profile for a collector using scattered ions while simultaneously forming a subcollector. In one embodiment, the invention includes: providing a substrate; forming a mask layer on the substrate including a first opening having a first dimension; and substantially simultaneously forming through the first opening a first impurity region at a first depth in the substrate (subcollector) and a second impurity region at a second depth different than the first depth in the substrate. The breakdown voltage of a device can be controlled by the size of the first dimension, i.e., the distance of first opening to an active region of the device. Numerous different sized openings can be used to provide devices with different breakdown voltages using a single mask and single implant. A semiconductor device is also disclosed.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Louis D. Lanzerotti, Bradley A. Orner, Jay S. Rascoe, David C. Sheridan, Stephen A. St. Onge
  • Publication number: 20110143494
    Abstract: A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey B. JOHNSON, Xuefeng LIU, Bradley A. ORNER, Robert M. RASSEL
  • Patent number: 7936041
    Abstract: The structure for millimeter-wave frequency applications, includes a Schottky barrier diode (SBD) with a cutoff frequency (FC) above 1.0 THz formed on a SiGe BiCMOS wafer. A method is also contemplated for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel
  • Publication number: 20110062548
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Patent number: 7892910
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli