Patents by Inventor Bradley Vincent

Bradley Vincent has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139592
    Abstract: A golf club head having a flexible channel to improve the performance of the club head, and a channel tuning system to reduce undesirable club head characteristics introduced, or heightened, via the flexible channel. The channel tuning system includes a sole engaging channel tuning element in contact with the sole and the channel. The club head may include an aerodynamic configuration, as well as a body tuning system.
    Type: Application
    Filed: November 6, 2023
    Publication date: May 2, 2024
    Applicant: Taylor Made Golf Company, Inc.
    Inventors: Jason Andrew Mata, Joseph Henry Hoffman, Bradley Poston, Matthew David Johnson, Mark Vincent Greaney
  • Publication number: 20240108217
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 4, 2024
    Inventors: Samuel A. MILLER, Lomesh AGARWAL, Lionel Ernest EDWIN, Ivan Li Chuen YEOH, Daniel FARMER, Sergey Fyodorovich PROKUSHKIN, Yonatan MUNK, Edwin Joseph SELKER, Bradley Vincent STUART, Jeffrey Scott SOMMERS
  • Patent number: 11883104
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: January 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Bradley Vincent Stuart, Jeffrey Scott Sommers
  • Publication number: 20230305627
    Abstract: An eye tracking system can include an eye-tracking camera configured to obtain images of the eye at different exposure times or different frame rates. For example, longer exposure images of the eye taken at a longer exposure time can show iris or pupil features, and shorter exposure, glint images can show peaks of glints reflected from the cornea. The shorter exposure glint images may be taken at a higher frame rate (than the longer exposure images) for accurate gaze prediction. The shorter exposure glint images can be analyzed to provide glint locations to subpixel accuracy. The longer exposure images can be analyzed for pupil center or center of rotation. The eye tracking system can predict future gaze direction, which can be used for foveated rendering by a wearable display system. In some instances, the eye-tracking system may estimate the location of a partially or totally occluded glint.
    Type: Application
    Filed: April 18, 2023
    Publication date: September 28, 2023
    Inventors: Daniel FARMER, David COHEN, Bradley Vincent STUART
  • Patent number: 11675432
    Abstract: An eye tracking system can include an eye-tracking camera configured to obtain images of the eye at different exposure times or different frame rates. For example, longer exposure images of the eye taken at a longer exposure time can show iris or pupil features, and shorter exposure, glint images can show peaks of glints reflected from the cornea. The shorter exposure glint images may be taken at a higher frame rate (than the longer exposure images) for accurate gaze prediction. The shorter exposure glint images can be analyzed to provide glint locations to subpixel accuracy. The longer exposure images can be analyzed for pupil center or center of rotation. The eye tracking system can predict future gaze direction, which can be used for foveated rendering by a wearable display system. In some instances, the eye-tracking system may estimate the location of a partially or totally occluded glint.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: June 13, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Daniel Farmer, David Cohen, Bradley Vincent Stuart
  • Publication number: 20230037046
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag
  • Patent number: 11468640
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: October 11, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag
  • Publication number: 20220301217
    Abstract: Systems and methods for eye tracking latency enhancements. An example head-mounted system obtains a first image of an eye of a user. The first image is provided as input to a machine learning model which has been trained to generate iris and pupil segmentation data given an image of an eye. A second image of the eye is obtained. A set of locations in the second image at which one or more glints are shown is detected based on iris segmentation data generated for the first image. A region of the second image at which the pupil of the eye of the user is shown is identified based on pupil segmentation data generated for the first image. A pose of the eye of the user is determined based on the detected set of glint locations in the second image and the identified region of the second image.
    Type: Application
    Filed: July 1, 2020
    Publication date: September 22, 2022
    Inventors: Bradley Vincent Stuart, Daniel Farmer, Tiejian Zhang, Shiuli Das, Suraj Manjunath Shanbhag, Erik Fonseka
  • Publication number: 20220237823
    Abstract: An eye tracking system can include an eye-tracking camera configured to obtain images of the eye at different exposure times or different frame rates. For example, longer exposure images of the eye taken at a longer exposure time can show iris or pupil features, and shorter exposure, glint images can show peaks of glints reflected from the cornea. The shorter exposure glint images may be taken at a higher frame rate (than the longer exposure images) for accurate gaze prediction. The shorter exposure glint images can be analyzed to provide glint locations to subpixel accuracy. The longer exposure images can be analyzed for pupil center or center of rotation. The eye tracking system can predict future gaze direction, which can be used for foveated rendering by a wearable display system. In some instances, the eye-tracking system may estimate the location of a partially or totally occluded glint.
    Type: Application
    Filed: April 13, 2022
    Publication date: July 28, 2022
    Inventors: Daniel Farmer, David Cohen, Bradley Vincent Stuart
  • Patent number: 11379036
    Abstract: Systems and methods for eye tracking calibration in a wearable system are described. The wearable system can present three-dimensional (3D) virtual content and allow a user to interact with the 3D virtual content using eye gaze. During an eye tracking calibration, the wearable system can validate that a user is indeed looking at a calibration target while the eye tracking data is acquired. The validation may be performed based on data associated with the user's head pose and vestibulo-ocular reflex.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: July 5, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Benjamin Joseph Uscinski, Yan Xu, Bradley Vincent Stuart
  • Patent number: 11315288
    Abstract: An eye tracking system can include an eye-tracking camera configured to obtain images of the eye at different exposure times or different frame rates. For example, longer exposure images of the eye taken at a longer exposure time can show iris or pupil features, and shorter exposure, glint images can show peaks of glints reflected from the cornea. The shorter exposure glint images may be taken at a higher frame rate (than the longer exposure images) for accurate gaze prediction. The shorter exposure glint images can be analyzed to provide glint locations to subpixel accuracy. The longer exposure images can be analyzed for pupil center or center of rotation. The eye tracking system can predict future gaze direction, which can be used for foveated rendering by a wearable display system. In some instances, the eye-tracking system may estimate the location of a partially or totally occluded glint.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: April 26, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Daniel Farmer, David Cohen, Bradley Vincent Stuart
  • Publication number: 20220057862
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Application
    Filed: September 2, 2021
    Publication date: February 24, 2022
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Bradley Vincent Stuart, Jeffrey Scott Sommers
  • Publication number: 20220011859
    Abstract: Systems and methods for eye tracking calibration in a wearable system are described. The wearable system can present three-dimensional (3D) virtual content and allow a user to interact with the 3D virtual content using eye gaze. During an eye tracking calibration, the wearable system can validate that a user is indeed looking at a calibration target while the eye tracking data is acquired. The validation may be performed based on data associated with the user's head pose and vestibulo-ocular reflex.
    Type: Application
    Filed: June 18, 2021
    Publication date: January 13, 2022
    Inventors: Benjamin Joseph Uscinski, Yan Xu, Bradley Vincent Stuart
  • Patent number: 11112863
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 7, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Bradley Vincent Stuart, Jeffrey Scott Sommers
  • Patent number: 11068055
    Abstract: Systems and methods for eye tracking calibration in a wearable system are described. The wearable system can present three-dimensional (3D) virtual content and allow a user to interact with the 3D virtual content using eye gaze. During an eye tracking calibration, the wearable system can validate that a user is indeed looking at a calibration target while the eye tracking data is acquired. The validation may be performed based on data associated with the user's head pose and vestibulo-ocular reflex.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: July 20, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Benjamin Joseph Uscinski, Yan Xu, Bradley Vincent Stuart
  • Publication number: 20200372678
    Abstract: An eye tracking system can include an eye-tracking camera configured to obtain images of the eye at different exposure times or different frame rates. For example, longer exposure images of the eye taken at a longer exposure time can show iris or pupil features, and shorter exposure, glint images can show peaks of glints reflected from the cornea. The shorter exposure glint images may be taken at a higher frame rate (than the longer exposure images) for accurate gaze prediction. The shorter exposure glint images can be analyzed to provide glint locations to subpixel accuracy. The longer exposure images can be analyzed for pupil center or center of rotation. The eye tracking system can predict future gaze direction, which can be used for foveated rendering by a wearable display system. In some instances, the eye-tracking system may estimate the location of a partially or totally occluded glint.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 26, 2020
    Inventors: Daniel Farmer, David Cohen, Bradley Vincent Stuart
  • Publication number: 20200249755
    Abstract: Systems and methods for eye tracking calibration in a wearable system are described. The wearable system can present three-dimensional (3D) virtual content and allow a user to interact with the 3D virtual content using eye gaze. During an eye tracking calibration, the wearable system can validate that a user is indeed looking at a calibration target while the eye tracking data is acquired. The validation may be performed based on data associated with the user's head pose and vestibulo-ocular reflex.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 6, 2020
    Inventors: Benjamin Joseph Uscinski, Yan Xu, Bradley Vincent Stuart
  • Patent number: 10671160
    Abstract: Systems and methods for eye tracking calibration in a wearable system are described. The wearable system can present three-dimensional (3D) virtual content and allow a user to interact with the 3D virtual content using eye gaze. During an eye tracking calibration, the wearable system can validate that a user is indeed looking at a calibration target while the eye tracking data is acquired. The validation may be performed based on data associated with the user's head pose and vestibulo-ocular reflex.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 2, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Benjamin Joseph Uscinski, Yan Xu, Bradley Vincent Stuart
  • Publication number: 20200043236
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 6, 2020
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag
  • Publication number: 20190243448
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Application
    Filed: January 17, 2019
    Publication date: August 8, 2019
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edward Joseph Selker, Bradley Vincent Stuart