Patents by Inventor Brady J. Gibbons

Brady J. Gibbons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11384450
    Abstract: Embodiments disclosed herein include potassium sodium niobate (KNN) films and methods of making such films. In an embodiment, a method of forming a potassium sodium niobate (KNN) film comprises preparing a solution comprising water, potassium hexaniobate salts, and sodium hexaniobate salts. In an embodiment, the solution is spin coated onto a substrate to form a film on at least a portion of a surface of the substrate. In an embodiment, the method may further comprise heat treating the film.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: July 12, 2022
    Assignee: OREGON STATE UNIVERSITY
    Inventors: Michelle Dolgos, Dylan Fast, May Nyman, Brady J. Gibbons, Matthew O. Clark
  • Publication number: 20210254239
    Abstract: Embodiments disclosed herein include potassium sodium niobate (KNN) films and methods of making such films. In an embodiment, a method of forming a potassium sodium niobate (KNN) film comprises preparing a solution comprising water, potassium hexaniobate salts, and sodium hexaniobate salts. In an embodiment, the solution is spin coated onto a substrate to form a film on at least a portion of a surface of the substrate. In an embodiment, the method may further comprise heat treating the film.
    Type: Application
    Filed: June 13, 2019
    Publication date: August 19, 2021
    Inventors: Michelle DOLGOS, Dylan FAST, May NYMAN, Brady J. GIBBONS, Matthew O. CLARK
  • Patent number: 8822978
    Abstract: An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 2, 2014
    Assignee: The State of Oregon Acting by and through...
    Inventors: E. William Cowell, III, John F. Wager, Brady J. Gibbons, Douglas A. Keszler
  • Patent number: 8456061
    Abstract: A piezoelectric thin film device comprises a piezoelectric thin film having upper and lower surfaces and a defined tilted crystal morphology, a top electrode disposed on the upper surface, a substrate having a surface morphology that corresponds to the defined crystallographically tilted morphology, and a bottom electrode disposed between and crystallographically linked to both the lower surface of the piezoelectric thin film and the substrate surface, the bottom and top electrodes having a parallel planar configuration relative to the plane of the substrate and the defined crystallographically tilted morphology having a crystallographic c-axis direction oriented at a >0° angle relative to the normal to the plane of the electrodes; and method of making the device.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: June 4, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Brady J. Gibbons, Chris Shelton, Peter Mardilovich, Tony S. Cruz-Uribe
  • Patent number: 8436337
    Abstract: An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: May 7, 2013
    Assignee: The State of Oregon Acting By and Through The State Board of Higher Education on Behalf of Oregon State Unitiversity
    Inventors: E. William Cowell, III, John F. Wager, Brady J. Gibbons, Douglas A. Keszler
  • Publication number: 20120187804
    Abstract: A piezoelectric thin film device comprises a piezoelectric thin film having upper and lower surfaces and a defined tilted crystal morphology, a top electrode disposed on the upper surface, a substrate having a surface morphology that corresponds to the defined crystallographically tilted morphology, and a bottom electrode disposed between and crystallographically linked to both the lower surface of the piezoelectric thin film and the substrate surface, the bottom and top electrodes having a parallel planar configuration relative to the plane of the substrate and the defined crystallographically tilted morphology having a crystallographic c-axis direction oriented at a >0° angle relative to the normal to the plane of the electrodes; and method of making the device.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Inventors: Brady J. GIBBONS, Chris Shelton, Peter Mardilovich, Tony S. Cruz-Uribe
  • Publication number: 20100289005
    Abstract: An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 18, 2010
    Inventors: E. William Cowell, III, John F. Wager, Brady J. Gibbons, Douglas A. Keszler
  • Patent number: 6444336
    Abstract: A dielectric composite material comprising at least two crystal phases of different components with TiO2 as a first component and a material selected from the group consisting of Ba1−xSrxTiO3 where x is from 0.3 to 0.7, Pb1−xCaxTiO3 where x is from 0.4 to 0.7, Sr1−xPbxTiO3 where x is from 0.2 to 0.4, Ba1−xCdxTiO3 where x is from 0.02 to 0.1, BaTi1−xZrxO3 where x is from 0.2 to 0.3, BaTi1−xSnxO3 where x is from 0.15 to 0.3, BaTi1−xHfxO3 where x is from 0.24 to 0.3, Pb1−1.3xLaxTiO3+0.2x where x is from 0.23 to 0.3, (BaTiO3)x(PbFeo0.5Nb0.5O3)1−x where x is from 0.75 to 0.9, (PbTiO3)−(PbCo0.5W0.5O3)1−x where x is from 0.1 to 0.45, (PbTiO3)x(PbMg0.5W0.5O3)1−x where x is from 0.2 to 0.4, and (PbTiO3)x(PbFe0.5Ta0.5O3)1−x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: September 3, 2002
    Assignee: The Regents of the University of California
    Inventors: Quanxi Jia, Brady J. Gibbons, Alp T. Findikoglu, Bae Ho Park
  • Publication number: 20020114957
    Abstract: A dielectric composite material comprising at least two crystal phases of different components with TiO2 as a first component and a material selected from the group consisting of Ba1−xSrxTiO3 where x is from 0.3 to 0.7, Pb1−xCaxTiO3 where x is from 0.4 to 0.7, Sr1−xPbxTiO3 where x is from 0.2 to 0.4, Ba1−xCdxTiO3 where x is from 0.02 to 0.1, BaTi1−xZrxO3 where x is from 0.2 to 0.3, BaTi1−xSnxO3 where x is from 0.15 to 0.3, BaTi1−xHfxO3 where x is from 0.24 to 0.3, Pb1-1.3xLaxTiO3+0.2x where x is from 0.23 to 0.3, (BaTiO3)x(PbFe0.5Nb0.5O3)1−x where x is from 0.75 to 0.9, (PbTiO3)x(PbCo0.5W0.5O3)1−x where x is from 0.1 to 0.45, (PbTiO3)x(PbMg0.5W0.5O3)1−x where x is from 0.2 to 0.4, and (PbTiO3)x(PbFe0.5Ta0.5O3)1−x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 22, 2002
    Inventors: Quanxi Jia, Brady J. Gibbons, Alp T. Findikoglu, Bae Ho Park