Patents by Inventor Brandon A. Bartling

Brandon A. Bartling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113301
    Abstract: Methods of preparing a dry powder blend co-coagulating conductive carbon black particles and fibrillizable polytetrafluoroethylene particles from an aqueous dispersion and drying the co-coagulate are described. Dry powders prepared by such methods and electrodes prepared from such powders are also described.
    Type: Application
    Filed: September 7, 2023
    Publication date: April 4, 2024
    Inventors: Michael H. Mitchell, Michael C. Dadalas, Mark W. Muggli, Helmut Traunspurger, André Streiter, Kevin W. Eberman, Brandon A. Bartling
  • Publication number: 20240084139
    Abstract: The composition includes a vinyl-substituted polysiloxane having at least two vinyl groups, a hydrosilylation catalyst, a hydrosilyl-substituted polysiloxane having at least two silicon-hydride groups, and a phosphorous-containing flame retardant encapsulated in a crosslinked, nitrogen-containing polymer. The composition may be a two-part composition including a first part and a second part. The first part includes a vinyl-substituted polysiloxane, a hydrosilylation catalyst, and a phosphorous-containing flame retardant encapsulated in a crosslinked, nitrogen-containing polymer. The second part includes a second vinyl-substituted polysiloxane and a hydrosilyl-substituted polysiloxane. A battery module including a plurality of battery cells and the composition at least partially encasing the plurality of battery cells is also disclosed.
    Type: Application
    Filed: December 23, 2020
    Publication date: March 14, 2024
    Inventors: Shaomin Sun, Lianzhou Chen, Brandon A. Bartling, QiongJuan Duan, Enzhong Zhang, Jeffrey E. Kapp, Xiao Gao
  • Publication number: 20240079719
    Abstract: The battery module includes a plurality of battery cells electrically connected to one another, a silicone rubber foam at least partially covering the plurality of battery cells, and a flame barrier sheet at least partially covering the plurality of battery cells. The process includes dispensing a silicone rubber foam composition on at least one of the plurality of battery cells or the flame barrier sheet and placing the flame barrier sheet on the plurality of battery cells.
    Type: Application
    Filed: December 23, 2020
    Publication date: March 7, 2024
    Inventors: Enzhong Zhang, Brandon A. Bartling, Lianzhou Chen, Xiao Gao, Jeffrey E. Kapp
  • Patent number: 11866565
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of intumescent particles distributed within the polymeric network structure; wherein the intumescent particles are present in a range from 15 to 99 weight percent, based on the total weight of the intumescent particles and the polymer (excluding the solvent); and wherein the polymer matrix composite volumetrically expands at least 2 times its initial volume when exposed to at least one temperature greater than 135° C.; and methods for making the same. The polymer matrix composites are useful, for example, as fillers, thermally initiated fuses, and fire stop devices.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 9, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Derek J. Dehn, Bharat R. Acharya, Brandon A. Bartling, Paul T. Hines, Clinton P. Waller, Jr., Satinder K. Nayar
  • Patent number: 11807732
    Abstract: Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: November 7, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Derek J. Dehn, Clinton P. Waller, Jr., Jeanne M. Bruss, Bharat R. Acharya, Brandon A. Bartling, Michael S. Graff, Noah O. Shanti, Fabian Stolzenburg, Satinder K. Nayar
  • Publication number: 20230299384
    Abstract: A thermal management assembly comprises an electrochemical cell, a heat sink, and a thermal pathway comprising a thermally interruptible interface interposed therebetween the electrochemical cell and the heat sink. The thermal pathway comprises an expandable material comprising intumescent particles. If heated to at least a first onset temperature, the expandable material expands and causes at least partial shear delamination at the first thermally interruptible interface. A composite thermal management article comprises a first layer comprising an expandable material comprising intumescent particles and a second layer comprising a thermal conductor material. The first and second layers contact each other at a thermally interruptible interface.
    Type: Application
    Filed: August 6, 2021
    Publication date: September 21, 2023
    Inventors: Victor Ho, Jacob P. Podkaminer, Matthew T. Johnson, Matthew H. Frey, Samuel J. Carpenter, Brandon A. Bartling
  • Patent number: 11472992
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of thermally conductive particles distributed within the polymeric network structure; wherein the thermally conductive particles are present in a range from 15 to 99 weight percent, based on the total weight of the thermally conductive particles and the polymer (excluding the solvent); and wherein the polymer matrix composite has a density of at least 0.3 g/cm3; and methods for making the same. The polymer matrix composites are useful, for example, in electronic devices.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 18, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Derek J. Dehn, Clinton P. Waller, Jr., Bharat R. Acharya, Brandon A. Bartling, Audrey S. Forticaux, Jeremy M. Higgins, Satinder K. Nayar
  • Publication number: 20220285757
    Abstract: A battery system includes a plurality of battery cells and a heat exchanger including a plurality of channels for transporting fluid. The channels extend generally along a first direction and are arranged along an orthogonal second direction. Each channel in the plurality of channels has a major surface disposed to contact the fluid. An integrally formed polymeric sheet extending along the first and second directions includes at least a portion of the major surface of each channel in the plurality of channels. A major surface of the heat exchanger is in thermal contact with a major surface of the plurality of battery cells.
    Type: Application
    Filed: September 3, 2020
    Publication date: September 8, 2022
    Inventors: Brandon A. Bartling, Raymond P. Johnston, Ryan D. Lovik, Ronald W. Ausen
  • Publication number: 20220213288
    Abstract: (Co)polymer matrix composites including a porous (co)polymeric network; a multiplicity of thermally-conductive particles, a multiplicity of intumescent particles and optionally a multiplicity of endothermic particles distributed within the (co)polymeric network structure; wherein the thermally-conductive particles, intumescent particles and optional endothermic particles are present in a range from 15 to 99 weight percent, based on the total weight of the particles and the (co)polymer (excluding the solvent). Optionally, the (co)polymer matrix composite volumetrically expands by at least 50% over its initial volume when exposed to at least one temperature greater than 135° C. when exposed to at least one temperature greater than 135° C. Methods of making and using the (co)polymer matrix composites are also disclosed. The (co)polymer matrix composites are useful, for example, as heat dissipating or heat absorbing articles, thermally-initiated fuses, and fire-stop devices.
    Type: Application
    Filed: May 7, 2020
    Publication date: July 7, 2022
    Inventors: Derek J. Dehn, Sebastian Goris, Paul T. Hines, Clinton P. Waller, Jr., Mario A. Perez, Bharat R. Acharya, Brandon A. Bartling
  • Publication number: 20220213373
    Abstract: A heat-removing sheet includes a plurality of endothermic particles and a chemically cured or radiation cured resin binding the endothermic particles together. The heat-removing sheet includes the endothermic particles at greater than 60 weight percent, has a flexural modulus of less than 3000 MPa and a flexural strength of greater than 0.15 MPa. The heat-removing sheet is a single free-standing layer.
    Type: Application
    Filed: June 2, 2020
    Publication date: July 7, 2022
    Inventors: Evan Koon Lun Yuuji Hajime, Brandon A. Bartling, Jason D. Clapper
  • Publication number: 20220131209
    Abstract: A battery module includes a plurality of electrochemical cells, each with a pair of electrical terminals, a first elongated member, electrically connecting a first terminal of at least one cell of the electrochemical cells to a second terminal of at least one other cell, and a second elongated member, electrically connecting a third terminal of at least one of the cells to a fourth terminal of at least one other cell, wherein at least a portion of the first and second elongated members is a hollow section defining a fluid pathway configured to transmit a fluid for transferring heat to or from the electrical terminals of the electrochemical cells.
    Type: Application
    Filed: January 20, 2020
    Publication date: April 28, 2022
    Inventors: Brandon A. Bartling, Bamidele O. Fayemi, Tyler S. Matthews
  • Patent number: 11280840
    Abstract: A method may determine a remaining capacity of a cell that includes a lithium-alloying material in an electrode using a controller. The method includes receiving a temperature signal representing a temperature of a partially discharged cell and receiving a voltage signal representing a voltage of the partially discharged cell. The method further includes determining a time-dependent fade component and a cycle-dependent fade component of the cell. The time-dependent fade component of the cell is determined based on the temperature, the voltage, and an operating time of the cell. The cycle-dependent fade component of the cell is determined based on a depth of discharge of the partially discharged cell and cycle count data representing cycle-dependent fade from previous cycles of the cell. The method further includes determining a remaining capacity of the cell based on the time-dependent fade component, the cycle-dependent fade component, and a reference capacity of the cell.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: March 22, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Vincent J. L. Chevrier, Brandon A. Bartling
  • Publication number: 20210363397
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of thermally conductive particles distributed within the polymeric network structure; wherein the thermally conductive particles are present in a range from 15 to 99 weight percent, based on the total weight of the thermally conductive particles and the polymer (excluding the solvent); and wherein the polymer matrix composite has a density of at least 0.3 g/cm3; and methods for making the same. The polymer matrix composites are useful, for example, in electronic devices.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 25, 2021
    Inventors: Derek J. Dehn, Clinton P. Waller, Jr., Bharat R. Acharya, Brandon A. Bartling, Audrey S. Forticaux, Jeremy M. Higgins, Satinder K. Nayar
  • Publication number: 20210336471
    Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance and to determine when to discharge the battery into a power grid in order to return power to the grid in exchange for an economic benefit such as a payment or rebate from a utility company.
    Type: Application
    Filed: September 10, 2019
    Publication date: October 28, 2021
    Inventors: Catherine A. Leatherdale, Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Vincent J.L. Chevrier, Don Vincent West, Brandon A. Bartling
  • Publication number: 20210190868
    Abstract: Method for active battery management to optimize battery performance. The method includes providing signal injections for charging and discharging of a battery. The signal injections include various charging and discharging profiles, rates, and endpoints. Response signals corresponding with the signal injections are received, and a utility of those signals is measured. Based upon the utility of the response signals, data relating to charging and discharging of the battery is modified to optimize battery performance.
    Type: Application
    Filed: September 3, 2019
    Publication date: June 24, 2021
    Inventors: Gilles J. Benoit, Catherine A. Leatherdale, Don Vincent West, Vincent J.L. Chevrier, Brandon A. Bartling
  • Publication number: 20210163702
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of intumescent particles distributed within the polymeric network structure; wherein the intumescent particles are present in a range from 15 to 99 weight percent, based on the total weight of the intumescent particles and the polymer (excluding the solvent); and wherein the polymer matrix composite volumetrically expands at least 2 times its initial volume when exposed to at least one temperature greater than 135° C.; and methods for making the same. The polymer matrix composites are useful, for example, as fillers, thermally initiated fuses, and fire stop devices.
    Type: Application
    Filed: January 22, 2021
    Publication date: June 3, 2021
    Inventors: Derek J. Dehn, Bharat R. Acharya, Brandon A. Bartling, Paul T. Hines, Clinton P. Waller, JR., Satinder K. Nayar
  • Patent number: 10927228
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of intumescent particles distributed within the polymeric network structure; wherein the intumescent particles are present in a range from 15 to 99 weight percent, based on the total weight of the intumescent particles and the polymer (excluding the solvent); and wherein the polymer matrix composite volumetrically expands at least 2 times its initial volume when exposed to at least one temperature greater than 135° C.; and methods for making the same. The polymer matrix composites are useful, for example, as fillers, thermally initiated fuses, and fire stop devices.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: February 23, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Bharat R. Acharya, Brandon A. Bartling, Derek J. Dehn, Paul T. Hines, Clinton P. Waller, Jr., Satinder K. Nayar
  • Publication number: 20200369847
    Abstract: A polymer matrix composite comprising a porous polymeric network; and a plurality of endothermic particles distributed within the polymeric network structure, wherein the endothermic particles are present in a range from 15 to 99 weight percent, based on the total weight of endothermic particles and the polymer (excluding any solvent); and wherein the polymer matrix composite has an endotherm of greater than 200 J/g; and methods for making the same. The polymer matrix composites are useful, for example, as a filler, thermal energy absorbers, and passive battery safety components.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 26, 2020
    Inventors: Brandon A. Bartling, Derek J. Dehn, Paul T. Hines, Clinton P. Waller, Jr., Satinder K. Nayar
  • Publication number: 20200347200
    Abstract: Method of making a polymer matrix composite comprising a porous polymeric network structure; and a plurality of particles distributed within the polymeric network structure, the method comprising: combining a thermoplastic polymer, a solvent that the thermoplastic polymer is soluble in, and a plurality of particles to provide a slurry; forming the slurry in to an article; heating the article in an environment to retain at least 90 percent by weight of the solvent, based on the weight of the solvent in the slurry, and inducing phase separation of the thermoplastic polymer from the solvent to provide the polymer matrix composite.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 5, 2020
    Inventors: Derek J. Dehn, Clinton P. Waller, Jr., Jeanne M. Bruss, Bharat R. Acharya, Brandon A. Bartling, Michael S. Graff, Noah O. Shanti, Fabian Stolzenburg, Satinder K. Nayar
  • Publication number: 20200174079
    Abstract: A method may determine a remaining capacity of a cell that includes a lithium-alloying material in an electrode using a controller. The method includes receiving a temperature signal representing a temperature of a partially discharged cell and receiving a voltage signal representing a voltage of the partially discharged cell. The method further includes determining a time-dependent fade component and a cycle-dependent fade component of the cell. The time-dependent fade component of the cell is determined based on the temperature, the voltage, and an operating time of the cell. The cycle-dependent fade component of the cell is determined based on a depth of discharge of the partially discharged cell and cycle count data representing cycle-dependent fade from previous cycles of the cell. The method further includes determining a remaining capacity of the cell based on the time-dependent fade component, the cycle-dependent fade component, and a reference capacity of the cell.
    Type: Application
    Filed: June 25, 2018
    Publication date: June 4, 2020
    Inventors: Vincent J.L. Chevrier, Brandon A. Bartling