Patents by Inventor Brandon A. Rodriguez

Brandon A. Rodriguez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10260060
    Abstract: Modification of the amino acid sequence of a phenylpyruvate decarboxylase from Azospirillum brasilense produces a novel group of phenylpyruvate decarboxylases with improved specificity to certain substrates, including in particular C7-C11 2-ketoacids such as, for example, 2-ketononanoate and 2-keto-octanoate. This specificity enables effective use of the phenylpyruvate decarboxylase in, for example, an in vivo process wherein 2-ketobutyrate or 2-ketoisovalerate are converted to C7-C11 2-ketoacids, and the novel phenylpyruvate decarboxylase converts the C7-C11 2-ketoacid to a C6-C10 aldehyde having one less carbon than the 2-ketoacid. Ultimately, through contact with additional enzymes, such C6-C10 aldehydes may be converted to, for example, C6-C10 alcohols, C6-C10 carboxylic acids, C6-C10 alkanes, and other derivatives. Use of the novel genetically modified phenylpyruvate decarboxylases may represent a lower cost alternative to non-biobased approaches.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: April 16, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Paresh C. Sanghani, Christopher C. Stowers, Brandon A. Rodriguez, Eric C. Shiue, Scott A. Greenwalt
  • Patent number: 10150951
    Abstract: A method is provided for making a banana or plantain product comprising providing at least one unpeeled banana or plantain comprising banana or plantain peel and banana or plantain pulp, subjecting the at least one unpeeled banana or plantain to a heat treatment at a temperature and for a time sufficient to gelatinize starch present in the at least one unpeeled banana or plantain to form at least one heat treated unpeeled banana or plantain, and comminuting the at least one heat treated unpeeled banana or plantain to form a banana or plantain puree. A functional food ingredient is also provided comprising a banana or plantain puree including banana or plantain pulp and optionally banana or plantain peel. Foods containing banana or plantain puree or powder are provided, including crackers, snack bars, cereals, smoothies, and cookies.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: December 11, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Shang-Tian Yang, Ehab Ammar, Christopher C. Stowers, Brandon A. Rodriguez
  • Patent number: 9951356
    Abstract: Modification of metabolic pathways includes genetically engineering at least one enzyme involved in elongating 2-ketoacids during leucine biosynthesis, and preferably at least isopropylmalate dehydrogenase or synthase (LeuB or LeuA in E. coli), to include at least such non-native enzyme, enzyme complex, or combination thereof to convert 2-ketobutyrate or 2-ketoisovalerate to a C7-C11 2-ketoacid, wherein the production of such is at a higher efficiency than if a purely native pathway is followed. The C7-C11 2-ketoacid may then be converted, via a native or genetically engineered thiamin dependent decarboxylase, to form a C6-C10 aldehyde having one less carbon than the C7-C11 2-ketoacid being converted. In some embodiments the C6-C10 aldehyde may then be converted via additional native or genetically engineered enzymes to form other C6-C10 products, including alcohols, carboxylic acids, and alkanes.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: April 24, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Paresh C. Sanghani, Brandon A. Rodriguez, Christopher C. Stowers, Amudhan Venkateswaran
  • Publication number: 20170369863
    Abstract: Modification of the amino acid sequence of a phenylpyruvate decarboxylase from Azospirillum brasilense produces a novel group of phenylpyruvate decarboxylases with improved specificity to certain substrates, including in particular C7-C11 2-ketoacids such as, for example, 2-ketononanoate and 2-keto-octanoate. This specificity enables effective use of the phenylpyruvate decarboxylase in, for example, an in vivo process wherein 2-ketobutyrate or 2-ketoisovalerate are converted to C7-C11 2-ketoacids, and the novel phenylpyruvate decarboxylase converts the C7-C11 2-ketoacid to a C6-C10 aldehyde having one less carbon than the 2-ketoacid. Ultimately, through contact with additional enzymes, such C6-C10 aldehydes may be converted to, for example, C6-C10 alcohols, C6-C10 carboxylic acids, C6-C10 alkanes, and other derivatives. Use of the novel genetically modified phenylpyruvate de carboxylases may represent a lower cost alternative to non-biobased approaches.
    Type: Application
    Filed: December 10, 2015
    Publication date: December 28, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Paresh C. Sanghani, Christopher C. Stowers, Brandon A. Rodriguez, Eric C. Shiue, Scott A. Greenwalt
  • Patent number: 9834797
    Abstract: A process to prepare propionic acid comprises preparing a fermentation broth of water; at least 30 weight percent hydrolyzed corn mash solids, hydrolyzed sugar cane mash solids, or a combination thereof, based on the combined weight of the fermentation broth as a whole; and propionibacteria; without including the typical, frequently very costly supplementation with vitamin and mineral packages. Surprisingly, these mash solids, which must often be disposed of following syrup production, are capable of supplying the nitrogen, micronutrients, vitamins and minerals known to be needed for propionibacteria fermentation, making their sole or significant use as fermentation mediums far more economical and therefore desirable than other fermentation mediums which require supplementation.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: December 5, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Christopher C. Stowers, Brandon A. Rodriguez, Brad M. Cox
  • Publication number: 20160355850
    Abstract: Modification of metabolic pathways includes genetically engineering at least one enzyme involved in elongating 2-ketoacids during leucine biosynthesis, and preferably at least isopropylmalate dehydrogenase or synthase (LeuB or LeuA in E. coli), to include at least such non-native enzyme, enzyme complex, or combination thereof to convert 2-ketobutyrate or 2-ketoisovalerate to a C7-C11 2-ketoacid, wherein the production of such is at a higher efficiency than if a purely native pathway is followed. The C7-C11 2-ketoacid may then be converted, via a native or genetically engineered thiamin dependent decarboxylase, to form a C6-C10 aldehyde having one less carbon than the C7-C11 2-ketoacid being converted. In some embodiments the C6-C10 aldehyde may then be converted via additional native or genetically engineered enzymes to form other C6-C10 products, including alcohols, carboxylic acids, and alkanes.
    Type: Application
    Filed: December 10, 2014
    Publication date: December 8, 2016
    Inventors: Paresh C. Sanghani, Brandon A. Rodriguez, Christopher C. Stowers, Amudhan Venkateswaran
  • Publication number: 20160017384
    Abstract: A process to prepare propionic acid comprises preparing a fermentation broth of water; at least 30 weight percent hydrolyzed corn mash solids, hydrolyzed sugar cane mash solids, or a combination thereof, based on the combined weight of the fermentation broth as a whole; and propionibacteria; without including the typical, frequently very costly supplementation with vitamin and mineral packages. Surprisingly, these mash solids, which must often be disposed of following syrup production, are capable of supplying the nitrogen, micronutrients, vitamins and minerals known to be needed for propionibacteria fermentation, making their sole or significant use as fermentation mediums far more economical and therefore desirable than other fermentation mediums which require supplementation.
    Type: Application
    Filed: February 17, 2014
    Publication date: January 21, 2016
    Applicant: Dow Global Technologies LLC
    Inventors: Christopher C. Stowers, Brandon A. Rodriguez, Brad M. Cox
  • Publication number: 20160009624
    Abstract: A salt-splitting liquid and a process that uses the salt-splitting liquid to “split” ammonium propionate salts into ammonia (or amines) and propionic acid that minimizes increases in the viscosity.
    Type: Application
    Filed: February 17, 2014
    Publication date: January 14, 2016
    Applicant: Dow Global Technologies LLC
    Inventors: Sanjib Biswas, Barry B. Fish, Viet Pham, Binghe Gu, Brandon A. Rodriguez
  • Publication number: 20150366248
    Abstract: A method is provided for making a banana or plantain product comprising providing at least one unpeeled banana or plantain comprising banana or plantain peel and banana or plantain pulp, subjecting the at least one unpeeled banana or plantain to a heat treatment at a temperature and for a time sufficient to gelatinize starch present in the at least one unpeeled banana or plantain to form at least one heat treated unpeeled banana or plantain, and comminuting the at least one heat treated unpeeled banana or plantain to form a banana or plantain puree. A functional food ingredient is also provided comprising a banana or plantain puree including banana or plantain pulp and optionally banana or plantain peel.
    Type: Application
    Filed: December 16, 2013
    Publication date: December 24, 2015
    Inventors: Shang-Tian Yang, Ehab Ammar, Christopher C. Stowers, Brandon A. Rodriguez
  • Patent number: 9187389
    Abstract: A method of producing an alcohol compound from an organic acid compound including the step of heating a solution of the organic acid compound in the presence of a heterogeneous catalyst including transition metal supported upon a cross-linked functional polymer.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: November 17, 2015
    Assignees: Rohm and Haas Company, Dow Global Technologies LLC
    Inventors: Brandon A. Rodriguez, Jose A. Trejo O'Reilly
  • Publication number: 20150251982
    Abstract: A method of producing an alcohol compound from an organic acid compound including the step of heating a solution of the organic acid compound in the presence of a heterogeneous catalyst including transition metal supported upon a cross-linked functional polymer.
    Type: Application
    Filed: August 13, 2013
    Publication date: September 10, 2015
    Applicants: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Brandon A. Rodriguez, Jose A. Trejo O' Reilly
  • Publication number: 20130041169
    Abstract: A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 14, 2013
    Applicant: Northwestern University
    Inventors: Tobin J. Marks, Brandon A. Rodriguez, Massimiliano Delferro
  • Patent number: 8236907
    Abstract: A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 7, 2012
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Brandon A. Rodriguez, Massimiliano Delferro
  • Publication number: 20100121008
    Abstract: A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.
    Type: Application
    Filed: October 6, 2009
    Publication date: May 13, 2010
    Inventors: Tobin J. Marks, Brandon A. Rodriguez, Massimiliano Delferro