Patents by Inventor Brandon Andrew Barnes

Brandon Andrew Barnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9857540
    Abstract: A strain relief boot and a fiber optic cable assembly are described. The strain relief boot has a first conduit made of at least a first material. The first conduit has a front segment and a rear segment. The rear segment includes at least one discontinuity to make the rear segment more flexible than the front segment. The rear segment also includes at least one projection extending outwardly from the rear segment at a location adjacent to the at least one discontinuity. The strain relief boot also has a second conduit made from at least a second material that is less rigid than the first material. The second conduit at least partially surrounds at least the rear segment of the first conduit and extends rearwardly of the first conduit.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: January 2, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Izhar Zahoor Ahmed, Brandon Andrew Barnes, Ashley Wesley Jones, Nikhil Baburam Vasudeo
  • Patent number: 9791657
    Abstract: A method of removing a tight buffer coating from an optical fiber involves positioning an end section of the optical fiber next to an end of a tube, with at least a portion of the the end section including a primary coating and the tight buffer coating. The tube has an inner diameter greater than an outer diameter of the primary coating and an outer diameter less than an outer diameter of the tight buffer coating. The method also involves applying energy to heat the tight buffer coating, inserting the end section of the optical fiber into the tube so that the tight buffer coating contacts the end of the tube, and advancing the end section of the optical fiber along the tube. The tube removes the tight buffer coating from the primary coating as the end section of the optical fiber is advanced.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: October 17, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Ching-Kee Chien, Brandon Andrew Barnes
  • Publication number: 20170242203
    Abstract: A fiber optic connector is described herein. The fiber optic connector includes a ferrule for supporting at least one optical fiber of a fiber optic cable, a ferrule holder from which the ferrule extends, a housing in which the ferrule holder is received, and a strain relief device at least partially located within the housing. The strain relief device has at least one resilient clamping member selectively applying a compressive force to at least a portion of the fiber optic cable. The strain relief device also has an actuator at least partially surrounding the ferrule holder, and used to place the at least one resilient clamping member into compressed contact with the fiber optic cable, thus retaining the fiber optic cable within the housing.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventors: Ashley Wesley Jones, Andrey Nikolayevich Levandovskiy, Brandon Andrew Barnes
  • Patent number: 9739954
    Abstract: A fiber optic connector is described herein. The fiber optic connector includes a ferrule for supporting at least one optical fiber of a fiber optic cable, a ferrule holder from which the ferrule extends, a housing in which the ferrule holder is received, and a strain relief device at least partially located within the housing. The strain relief device has at least one resilient clamping member selectively applying a compressive force to at least a portion of the fiber optic cable. The strain relief device also has an actuator at least partially surrounding the ferrule holder, and used to place the at least one resilient clamping member into compressed contact with the fiber optic cable, thus retaining the fiber optic cable within the housing.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 22, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Ashley Wesley Jones, Andrey Nikolayevich Levandovskiy, Brandon Andrew Barnes
  • Publication number: 20170235063
    Abstract: A strain relief boot and a fiber optic cable assembly are described. The strain relief boot has a first conduit made of at least a first material. The first conduit has a front segment and a rear segment. The rear segment includes at least one discontinuity to make the rear segment more flexible than the front segment. The rear segment also includes at least one projection extending outwardly from the rear segment at a location adjacent to the at least one discontinuity. The strain relief boot also has a second conduit made from at least a second material that is less rigid than the first material. The second conduit at least partially surrounds at least the rear segment of the first conduit and extends rearwardly of the first conduit.
    Type: Application
    Filed: January 30, 2017
    Publication date: August 17, 2017
    Inventors: Izhar Zahoor Ahmed, Brandon Andrew Barnes, Ashley Wesley Jones, Nikhil Baburam Vasudeo
  • Patent number: 9453964
    Abstract: Apparatus and methods for stripping tight-buffered optical fibers are disclosed. The apparatus is configured to perform one or more of the functions of stripping a tight buffer layer, removing a coating layer, and cleaving the fiber, in a single motion.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: September 27, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Brandon Andrew Barnes, Joshua Douglas Raker, Kevin Lee Strause
  • Publication number: 20150346452
    Abstract: A method of removing a tight buffer coating from an optical fiber involves positioning an end section of the optical fiber next to an end of a tube, with at least a portion of the the end section including a primary coating and the tight buffer coating. The tube has an inner diameter greater than an outer diameter of the primary coating and an outer diameter less than an outer diameter of the tight buffer coating. The method also involves applying energy to heat the tight buffer coating, inserting the end section of the optical fiber into the tube so that the tight buffer coating contacts the end of the tube, and advancing the end section of the optical fiber along the tube. The tube removes the tight buffer coating from the primary coating as the end section of the optical fiber is advanced.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 3, 2015
    Inventors: Ching-Kee Chien, Brandon Andrew Barnes
  • Publication number: 20140238208
    Abstract: Apparatus and methods for stripping tight-buffered optical fibers are disclosed. The apparatus is configured to perform one or more of the functions of stripping a tight buffer layer, removing a coating layer, and cleaving the fiber, in a single motion.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 28, 2014
    Applicant: Coring Optical Communications LLC
    Inventors: Brandon Andrew Barnes, Joshua Douglas Raker, Kevin Lee Strause
  • Patent number: 7815377
    Abstract: A fiber optic mechanical splice connector including a single connector element operable for providing optical fiber alignment and strain relief includes opposed splice components that define first and second grooves for receiving the bare glass portions of mating optical fibers, as well as the coated or buffered portion of at least one of the optical fibers when the splice components are biased together by an actuator. The mating optical fibers are aligned while the coated or buffered portion of one of the optical fibers is retained within the same connector element, thus eliminating positioning problems that occur when separate connector elements are utilized for fiber alignment and strain relief. The splice components may be unbiased to allow removal of at least one of the mating optical fibers without destroying the connector assembly or potentially damaging the optical fibers.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 19, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Donald G. Doss, Daniel Leyva, Jr., Brandon Andrew Barnes
  • Patent number: 7520677
    Abstract: The present invention provides a non-physical contact (non-PC) visual fault locator (VFL) coupler that functions with fewer components and reduces handling, and without ferrule-to-ferrule contact, thereby reducing endface wear degradation and other problems. Specifically, the non-PC VFL coupler incorporates an alignment sleeve retainer that includes a connector stop, such that, when a field-installable fiber optic connector engages the alignment sleeve retainer of the non-PC VFL coupler, the endfaces of the ferrules of the non-PC VFL coupler and the field-installable fiber optic connector do not physically contact one another. Both 1.25 mm and 2.5 mm versions are contemplated, among others.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: April 21, 2009
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon Andrew Barnes, Bradley Scott Billman, David Wayne Meek, Scott Eric Semmler
  • Publication number: 20080170825
    Abstract: The present invention provides a non-physical contact (non-PC) visual fault locator (VFL) coupler that functions with fewer components and reduces handling, and without ferrule-to-ferrule contact, thereby reducing endface wear degradation and other problems. Specifically, the non-PC VFL coupler incorporates an alignment sleeve retainer that includes a connector stop, such that, when a field-installable fiber optic connector engages the alignment sleeve retainer of the non-PC VFL coupler, the endfaces of the ferrules of the non-PC VFL coupler and the field-installable fiber optic connector do not physically contact one another. Both 1.25 mm and 2.5 mm versions are contemplated, among others.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Inventors: Brandon Andrew Barnes, Bradley Scott Billman, David Wayne Meek, Scott Eric Semmier
  • Patent number: 7264410
    Abstract: A fiber optic mechanical splice connector including a single connector element operable for providing optical fiber alignment and strain relief includes opposed splice components that define first and second grooves for receiving the bare glass portions of mating optical fibers, as well as the coated or buffered portion of at least one of the optical fibers when the splice components are biased together by an actuator. The mating optical fibers are aligned while the coated or buffered portion of one of the optical fibers is retained within the same connector element, thus eliminating positioning problems that occur when separate connector elements are utilized for fiber alignment and strain relief. The splice components may be unbiased to allow removal of at least one of the mating optical fibers without destroying the connector assembly or potentially damaging the optical fibers.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: September 4, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Donald G. Doss, Daniel Leyva, Jr., Brandon Andrew Barnes