Patents by Inventor Brandon ARAKI

Brandon ARAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240034335
    Abstract: Systems and methods are provided for dynamic driver training, and may include: a communication interface to receive sensor data, the sensor data comprising driver biometric data and driver performance data for a driver operating a vehicle; a driver inference circuit to infer a skill level and emotional state of the driver operating the vehicle; and a driver training circuit to, based on the inferred skill level and emotional state of the driver operating the vehicle, dynamically adjust a driver training level for the driver while the driver is operating the vehicle.
    Type: Application
    Filed: July 26, 2022
    Publication date: February 1, 2024
    Applicants: TOYOTA RESEARCH INSTITUTE, INC., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: MINORU BRANDON ARAKI, Michael Thompson, James Dallas, Yan Ming Jonathan Goh, Avinash Balachandran
  • Patent number: 11724691
    Abstract: Systems and methods described herein relate to estimating risk associated with a vehicular maneuver. One embodiment acquires a geometric representation of an intersection including a lane in which a vehicle is traveling and at least one other lane; discretizes the at least one other lane into a plurality of segments; determines a trajectory along which the vehicle will travel; estimates a probability density function for whether a road agent external to the vehicle is present in the respective segments; estimates a traffic-conflict probability of a traffic conflict in the respective segments conditioned on whether an external road agent is present; estimates a risk associated with the vehicle following the trajectory by integrating a product of the probability density function and the traffic-conflict probability over the at least one other lane and the plurality of segments; and controls operation of the vehicle based, at least in part, on the estimated risk.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 15, 2023
    Assignees: Toyota Research Institute, Inc., Massachusetts Institute of Technology
    Inventors: Stephen G. McGill, Jr., Guy Rosman, Moses Theodore Ort, Alyssa Pierson, Igor Gilitschenski, Minoru Brandon Araki, Luke S. Fletcher, Sertac Karaman, Daniela Rus, John Joseph Leonard
  • Publication number: 20230062810
    Abstract: A method of generating an output trajectory of an ego vehicle is described. The method includes extracting high-level features from a bird-view image of a traffic environment of the ego vehicle. The method also includes generating, using an automaton generative network, an automaton including an automaton state distribution describing a behavior of the ego vehicle in the traffic environment according to the high-level features. The method further includes generating the output trajectory of the ego vehicle according to extracted bird-view features of the bird-view image and the automaton state distribution describing the behavior of the ego vehicle in the traffic environment.
    Type: Application
    Filed: July 9, 2021
    Publication date: March 2, 2023
    Applicants: TOYOTA RESEARCH INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, LEHIGH UNIVERITY
    Inventors: Xiao LI, Brandon ARAKI, Sertac KARAMAN, Daniela RUS, Guy ROSMAN, Igor GILITSCHENSKI, Cristian-Ioan VASILE
  • Publication number: 20200086859
    Abstract: Systems and methods described herein relate to estimating risk associated with a vehicular maneuver. One embodiment acquires a geometric representation of an intersection including a lane in which a vehicle is traveling and at least one other lane; discretizes the at least one other lane into a plurality of segments; determines a trajectory along which the vehicle will travel; estimates a probability density function for whether a road agent external to the vehicle is present in the respective segments; estimates a traffic-conflict probability of a traffic conflict in the respective segments conditioned on whether an external road agent is present; estimates a risk associated with the vehicle following the trajectory by integrating a product of the probability density function and the traffic-conflict probability over the at least one other lane and the plurality of segments; and controls operation of the vehicle based, at least in part, on the estimated risk.
    Type: Application
    Filed: June 13, 2019
    Publication date: March 19, 2020
    Inventors: Stephen G. McGill, JR., Guy Rosman, Moses Theodore Ort, Alyssa Pierson, Igor Gilitschenski, Minoru Brandon Araki, Luke S. Fletcher, Sertac Karaman, Daniela Rus, John Joseph Leonard