Patents by Inventor Brandon Ason

Brandon Ason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952573
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: April 9, 2024
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Publication number: 20220380772
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Application
    Filed: April 1, 2022
    Publication date: December 1, 2022
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Patent number: 11332745
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 17, 2022
    Assignee: Sima Therapeutics, Inc.
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Publication number: 20200332299
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Application
    Filed: January 23, 2020
    Publication date: October 22, 2020
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Patent number: 10577606
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: March 3, 2020
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Publication number: 20180100154
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Application
    Filed: August 2, 2017
    Publication date: April 12, 2018
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Publication number: 20160298123
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Application
    Filed: December 1, 2015
    Publication date: October 13, 2016
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Patent number: 9233997
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsR-NA), micro-RNA (miRNA), and short hair-pin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: January 12, 2016
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Brandon Ason, Duncan Brown, Walter Strapps
  • Publication number: 20130165500
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond expressed/synthetic to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short inter-fering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsR-NA), micro-RNA (miRNA), and short hair-pin RNA (shRNA) molecules that are capa-ble of mediating or that mediate RNA inter-ference (RNAi) against PHD2 gene expres-sion.
    Type: Application
    Filed: August 24, 2011
    Publication date: June 27, 2013
    Inventors: Brandon Ason, Duncan Brown, Walter Strapps
  • Publication number: 20060035245
    Abstract: The present invention discloses a nucleic acid cleavage assay for members of the transposase/integrase superfamily. A method of using the assay to screen for modulators of the nucleic acid cleavage activity is also disclosed. The present invention further provides a method for screening for modulators of binding of a transposase/integrase to its corresponding recognition sequence. In addition, the present invention provides a method of identifying a modulator for a particular transposase/integrase such as HIV integrase based on modulators of other members of the transposase/integrase superfamily. Also disclosed are Tn5 transposase inhibitors and HIV integration inhibitors.
    Type: Application
    Filed: April 20, 2005
    Publication date: February 16, 2006
    Inventors: Brandon Ason, William Reznikoff, Anna Skalka, Daniel Knauss