Patents by Inventor Brandon Bartling

Brandon Bartling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10511019
    Abstract: The present disclosure relates to liquid solutions which include particulates that can function as an electrode, thereby forming an electrode solution, useful in the fabrication of liquid flow electrochemical cells and liquid flow batteries. The electrode solutions of the present disclosure may include an electrolyte comprising a liquid medium and at least one redox active specie, wherein the electrolyte has a density, De; and a core-shell particulate (202, 204) having a core, a shell and a density Dp, wherein at least a portion of the shell of the core-shell particulate includes an electrically conductive first metal and wherein 0.8De?Dp?1.2De; and wherein a first redox active specie of the at least one redox active specie and the electrically conductive first metal are different elements. The present disclosure also provides electrochemical cells and liquid flow batteries comprising an electrode solution according to the present disclosure.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: December 17, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Brandon A. Bartling
  • Publication number: 20190181461
    Abstract: The present disclosure relates membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The membrane-electrode assemblies include a first porous electrode; an ion permeable membrane, having a first major surface and an opposed second major surface; a first discontinuous transport protection layer disposed between the first porous electrode and the first major surface of the ion permeable membrane; and a first adhesive layer in contact with the first porous electrode and at least one of the first discontinuous transport protection layer and the ion permeable membrane. The first adhesive layer is disposed along the perimeter of the membrane-electrode assembly.
    Type: Application
    Filed: August 9, 2017
    Publication date: June 13, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur Sinan Yordem, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Bharat R. Acharya, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Publication number: 20190144625
    Abstract: Polymer matrix composite comprising a porous polymeric network; and a plurality of intumescent particles distributed within the polymeric network structure; wherein the intumescent particles are present in a range from 15 to 99 weight percent, based on the total weight of the intumescent particles and the polymer (excluding the solvent); and wherein the polymer matrix composite volumetrically expands at least 2 times its initial volume when exposed to at least one temperature greater than 135° C.; and methods for making the same. The polymer matrix composites are useful, for example, as fillers, thermally initiated fuses, and fire stop devices.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 16, 2019
    Inventors: Bharat R. Acharya, Brandon A. Bartling, Derek J. Dehn, Paul T. Hines, Clinton P. Waller, JR., Satinder K. Nayar
  • Publication number: 20190131620
    Abstract: The present disclosure relates to liquid solutions which include particulates that can function as an electrode, thereby forming an electrode solution, useful in the fabrication of liquid flow electrochemical cells and liquid flow batteries. The electrode solutions of the present disclosure may include an electrolyte comprising a liquid medium and at least one redox active specie, wherein the electrolyte has a density, De; and a core-shell particulate (202, 204) having a core, a shell and a density Dp, wherein at least a portion of the shell of the core-shell particulate includes an electrically conductive first metal and wherein 0.8De?Dp?1.2De; and wherein a first redox active specie of the at least one redox active specie and the electrically conductive first metal are different elements. The present disclosure also provides electrochemical cells and liquid flow batteries comprising an electrode solution according to the present disclosure.
    Type: Application
    Filed: February 23, 2017
    Publication date: May 2, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Brandon A. Bartling
  • Publication number: 20190097241
    Abstract: The present disclosure relates to electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The electrode and membrane-electrode assemblies include (i) a porous electrode having a first major surface with a first surface area, Ae, an opposed second major surface and a plurality of voids; (ii) a discontinuous transport protection layer, comprising polymer, disposed on the first major surface and having a cross-sectional area, Ap, substantially parallel to the first major surface; and (iii) an interfacial region wherein the interfacial region includes a portion of the polymer embedded in at least a portion of the plurality of voids, a portion of the porous electrode embedded in a portion of the polymer or a combination thereof; and wherein 0.02Ae?Ap?0.85Ae and the porous electrode and discontinuous transport protection layer form an integral structure.
    Type: Application
    Filed: March 15, 2017
    Publication date: March 28, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur S. Yordem, Raymond P. Johnston, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Jimmy M. Le, Blake R. Griffith, Daniel E. Johnson, Bharat R. Acharya, Bradley W. Eaton, Michael D. Romano, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Publication number: 20180108915
    Abstract: The present disclosure relates to porous electrodes and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making electrodes. The porous electrodes include polymer, e.g. non-electrically conductive polymer particulate fiber, and an electrically conductive carbon particulate. The non-electrically conductive, polymer particulate fibers may be in the form of a first porous substrate, wherein the first porous substrate is at least one of a woven or nonwoven paper, felt, mat and cloth. The porous electrode may have an electrical resistivity of less than about 100000 ?Ohm·m. The porous electrode may have a thickness from about 10 microns to about 1000 microns. Electrochemical cells and liquid flow batteries may be produced from the porous electrodes of the present disclosure.
    Type: Application
    Filed: March 22, 2016
    Publication date: April 19, 2018
    Inventors: Raymond P. Johnston, Onur S. Yordem, Brett J. Sitter, Bradley W. Eaton, Brian T. Weber, Gregory M. Haugen, Bharat R. Acharya, Brandon A. Bartling
  • Publication number: 20180102549
    Abstract: The present disclosure relates to porous electrodes, membrane-electrode assemblies, electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making porous electrodes, membrane-electrode assemblies and electrode assemblies. The porous electrodes include a porous electrode material comprising a polymer and an electrically conductive carbon particulate; and a solid film substrate having a first major surface and a second major surface, wherein the solid film substrate includes a plurality of through holes extending from the first major surface to the second major surface. The porous electrode material is disposed on at least the first major surface and within the plurality of through holes of the solid film substrate. The plurality of through holes with the porous electrode material provide electrical communication between the first major surface and the opposed second major surface of the porous electrode.
    Type: Application
    Filed: March 22, 2016
    Publication date: April 12, 2018
    Inventors: Onur S. Yordem, Brian T. Weber, Brett J. Sitter, Raymond P. Johnston, Bradley W. Eaton, Andrew T. Haug, Gregory M. Haugen, Brandon A. Bartling
  • Publication number: 20180053944
    Abstract: The present disclosure relates to porous electrodes, membrane-electrode assemblies, electrode assemblies and electro-chemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making porous electrodes, membrane-electrode assemblies and electrode assemblies. The porous electrodes include a porous electrode material comprising a non-electrically conductive, polymer particulate; and an electrically conductive carbon particulate; wherein the electrically conductive carbon particulate is at least one of carbon nanotubes and branched carbon nanotubes. The electrically conductive carbon particulate is adhered directly to the surface of the non-electrically conductive, polymer particulate and at least a portion of the non-electrically conductive polymer particulate surface is fused to form a unitary, porous electrode material.
    Type: Application
    Filed: March 22, 2016
    Publication date: February 22, 2018
    Inventors: Raymond P. Johnston, Onur S. Yordem, Brian T. Weber, Brett J. Sitter, Bradley W. Eaton, Andrew T. Haug, Gregory M. Haugen, Ali E. Ozcam, Brandon A. Bartling, Bharat R. Acharya
  • Publication number: 20180048008
    Abstract: The present disclosure relates to porous electrodes, membrane-electrode assemblies, electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making electrodes, membrane-electrode assemblies and electrode assemblies. The porous electrodes include polymer, e.g. non-electrically conductive polymer particulate fiber, and an electrically conductive carbon particulate. The non-electrically conductive, polymer particulate fibers may be in the form of a first porous substrate, wherein the first porous substrate is at least one of a woven or nonwoven paper, felt, mat and cloth. Membrane-electrode assemblies and electrode assemblies may be produced from the porous electrodes of the present disclosure. Electrochemical cells and liquid flow batteries may be produced from the porous electrodes, membrane-electrode assemblies and electrode assemblies of the present disclosure.
    Type: Application
    Filed: March 22, 2016
    Publication date: February 15, 2018
    Inventors: Raymond P. Johnston, Onur S. Yordem, Brett J. Sitter, Bradley W. Eaton, Brian T. Weber, Gregory M. Haugen, Bharat R. Acharya, Brandon A. Bartling
  • Patent number: 9678030
    Abstract: A sensor for detecting gaseous agents has a transducer, which includes an electrical resonant circuit that forms an antenna. The sensor further includes a sensing material that is disposed on at least a portion of the transducer. The sensing material is configured to simultaneously exhibit a capacitance response and a resistance response in the presence of a gaseous agent. The sensor may be reversible, battery free, and may require no electrical contact with a sensor reader.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: June 13, 2017
    Assignee: General Electricity Company
    Inventors: Radislav Alexandrovich Potyrailo, Zhexiong Tang, Brandon Bartling, Nandini Nagraj, Vadim Bromberg
  • Publication number: 20160187280
    Abstract: A sensor for detecting gaseous agents has a transducer, which includes an electrical resonant circuit that forms an antenna. The sensor further includes a sensing material that is disposed on at least a portion of the transducer. The sensing material is configured to simultaneously exhibit a capacitance response and a resistance response in the presence of a gaseous agent. The sensor may be reversible, battery free, and may require no electrical contact with a sensor reader.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 30, 2016
    Inventors: Radislav Alexandrovich Potyralio, Zhexiong Tang, Brandon Bartling, Nandini Nagraj, Vadim Bromberg
  • Patent number: 7695840
    Abstract: An electrochemical cell comprising a gas electrode, including a deposited layer, and a counter electrode. The gas electrode is an electrode that either utilizes a gas as the active material that is reduced by the gas electrode or produces a gas by oxidation at the gas electrode. In a preferred embodiment, the gas electrode is a thin film electrode including a deposited current collector and deposited active material oxidation or reduction layer. A control layer can be disposed between the gas electrode and the counter electrode to control the diffusion of electrolyte into the gas electrode. Methods for making electrochemical cells having gas electrodes are disclosed.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 13, 2010
    Assignee: Eveready Battery Co., Inc.
    Inventor: Brandon A. Bartling
  • Patent number: 7648799
    Abstract: A silver-containing alkaline electrochemical cell and methods for producing the cell, wherein the cell includes a negative electrode, a positive electrode, a separator disposed between the electrodes, and an alkaline electrolyte, wherein the positive electrode is formed as a multi-layer composite including a silver-containing oxide layer and a barrier layer, initially free of silver-containing material, disposed between the silver-containing oxide layer and the separator for substantially reducing migration of silver ions to the separator and negative electrode.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 19, 2010
    Assignee: Eveready Battery Co., Inc.
    Inventors: Weiwei Huang, Brandon A. Bartling
  • Patent number: 7563531
    Abstract: An air depolarized battery with an improved sealing member for sealing the air inlet port(s) of the battery before use is disclosed. The sealing member has areas of relatively high and low permeability, with an area of low permeability over at least a portion of an air inlet port. The sealing member may comprise a plurality of layers, where the area of highest permeability includes a portion of the lowest permeability layer that has a higher permeability than a surrounding portion thereof. The rate of flow of air through the low permeability area and into the battery can be easily modified to maintain a desired battery open circuit voltage during battery storage to allow activation of the battery within a short time after removal of the sealing member, while minimizing losses in discharge capacity before use.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: July 21, 2009
    Assignee: Eveready Battery Company, Inc.
    Inventors: Brandon A. Bartling, Timothy D. Foley, Sonya C. Pitts
  • Publication number: 20080241682
    Abstract: A silver-containing alkaline electrochemical cell and methods for producing the cell, wherein the cell includes a negative electrode, a positive electrode, a separator disposed between the electrodes, and an alkaline electrolyte, wherein the positive electrode is formed as a multi-layer composite including a silver-containing oxide layer and a barrier layer, initially free of silver-containing material, disposed between the silver-containing oxide layer and the separator for substantially reducing migration of silver ions to the separator and negative electrode.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Weiwei Huang, Brandon A. Bartling
  • Patent number: 7405014
    Abstract: Various embodiments of a metal-air cell having a tab system that covers an air entry port of the metal-air cell are provided. In one representative embodiment the tab system includes polymer layer and an adhesive layer between the metal-air cell and the polymer layer. The tab system has a loss stiffness of less than 55,000 N/m at 20° C. to 25° C.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: July 29, 2008
    Assignee: Eveready Battery Company, Inc.
    Inventors: Brandon A. Bartling, Timothy D. Foley
  • Publication number: 20080138696
    Abstract: An electrochemical cell comprising a gas electrode, including a deposited layer, and a counter electrode. The gas electrode is an electrode that either utilizes a gas as the active material that is reduced by the gas electrode or produces a gas by oxidation at the gas electrode. In a preferred embodiment, the gas electrode is a thin film electrode including a deposited current collector and deposited active material oxidation or reduction layer. A control layer can be disposed between the gas electrode and the counter electrode to control the diffusion of electrolyte into the gas electrode. Methods for making electrochemical cells having gas electrodes are disclosed.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Inventor: Brandon A. Bartling
  • Publication number: 20060292427
    Abstract: An air depolarized battery with an improved sealing member for sealing the air inlet port(s) of the battery before use is disclosed. The sealing member has areas of relatively high and low permeability, with an area of low permeability over at least a portion of an air inlet port. The rate of flow of air through the low permeability area and into the battery can be easily modified to maintain a desired battery open circuit voltage during battery storage to allow activation of the battery within a short time after removal of the sealing member, while minimizing losses in discharge capacity before use.
    Type: Application
    Filed: June 24, 2005
    Publication date: December 28, 2006
    Inventors: Brandon Bartling, Timothy Foley, Sonya Pitts
  • Publication number: 20050136322
    Abstract: Various embodiments of a metal-air cell having a tab system that covers an air entry port of the metal-air cell are provided. In one representative embodiment the tab system includes polymer layer and an adhesive layer between the metal-air cell and the polymer layer. The tab system has a loss stiffness of less than 55,000 N/m at 20° C. to 25° C.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Brandon Bartling, Timothy Foley