Patents by Inventor Brandon C. Collings

Brandon C. Collings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9941955
    Abstract: A method may include receiving, by a switching engine, an optical signal that includes a channel. The method may include applying, by the switching engine, a first beam steering grating to direct a first portion of the channel to a first output port. The method may include applying, by the switching engine, one or more second beam steering gratings to direct at least one of a second portion of the channel to a second output port, or a third portion of the channel to a photodetector. The third portion may be approximately less, in power, than 10 percent of the channel.
    Type: Grant
    Filed: April 24, 2016
    Date of Patent: April 10, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Ian Breukelaar, Yi Liang, Shane H. Woodside, Barrie Keyworth, Wayne Bonnet, Peter David Roorda, Brandon C. Collings, Brian Smith
  • Patent number: 9866315
    Abstract: A method may include receiving, by a switching engine, an optical signal. The optical signal may carry a super-channel that includes a plurality of sub-carriers to be directed toward respective output ports. The switching engine may have a plurality of regions of pixels on which respective sub-carriers, of the plurality of sub-carriers, are incident. The method may include applying, by the switching engine, respective single beam steering gratings to first, overlapping, areas of the plurality of regions of pixels. The method may include applying, by the switching engine, one or more respective pluralities of beam steering gratings to second, overlapping areas of the plurality of regions of pixels. The method may include directing, based on the single beam steering gratings and the one or more pluralities of beam steering gratings, parts of the optical signal toward the respective output ports.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 9, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Barrie Keyworth, John Michael Miller, Andrew Parks, Dan Burke, Peter David Roorda, Brandon C. Collings, Brian Smith
  • Publication number: 20160316281
    Abstract: A method may include receiving, by a switching engine, an optical signal. The optical signal may carry a super-channel that includes a plurality of sub-carriers to be directed toward respective output ports. The switching engine may have a plurality of regions of pixels on which respective sub-carriers, of the plurality of sub-carriers, are incident. The method may include applying, by the switching engine, respective single beam steering gratings to first, overlapping, areas of the plurality of regions of pixels. The method may include applying, by the switching engine, one or more respective pluralities of beam steering gratings to second, overlapping areas of the plurality of regions of pixels. The method may include directing, based on the single beam steering gratings and the one or more pluralities of beam steering gratings, parts of the optical signal toward the respective output ports.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Inventors: Barrie KEYWORTH, John Michael Miller, Andrew Parks, Dan Burke, Peter David Roorda, Brandon C. Collings, Brian Smith
  • Publication number: 20160315697
    Abstract: A method may include receiving, by a switching engine, an optical signal that includes a channel. The method may include applying, by the switching engine, a first beam steering grating to direct a first portion of the channel to a first output port. The method may include applying, by the switching engine, one or more second beam steering gratings to direct at least one of a second portion of the channel to a second output port, or a third portion of the channel to a photodetector. The third portion may be approximately less, in power, than 10 percent of the channel.
    Type: Application
    Filed: April 24, 2016
    Publication date: October 27, 2016
    Inventors: Ian BREUKELAAR, Yi LIANG, Shane H. WOODSIDE, Barrie KEYWORTH, Wayne BONNET, Peter David ROORDA, Brandon C. COLLINGS, Brian SMITH
  • Patent number: 8160446
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 17, 2012
    Assignee: Ciena Corporation
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Patent number: 8135275
    Abstract: Two intensity modulated test signals are generated with precise frequency offset from a single laser source, and multiplexed into a combined test signal. The two modulated signals are demultiplexed at a receiver using a fixed periodic optical filter with complementary output ports. Group velocity dispersion/chromatic dispersion is measured over a large dynamic range, using pseudo-random intensity modulation and digital demodulation techniques.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 13, 2012
    Inventors: Fred L. Heismann, Brandon C. Collings
  • Patent number: 8095008
    Abstract: The present invention provides systems and methods to convert a reconfigurable optical node multiple-input multiple-output (MIMO) system to a single-input single-output (SISO) system suitable for a proportional-integral-differential (PID) control process. Advantageously, the present invention allows PID control to apply to a MIMO optical node by modeling the node as two SISO systems. The present invention optimizes the division of gain and loss between components in the reconfigurable optical node. This provides means to control the net gain and loss of a series of components when the component chain being controlled includes those components that have a single action affecting multiple channels and components that affect only one channel. The present invention utilizes control of a single quantity of amplifier gain minus attenuation for each channel, and the coupling together of all channels in the amplifier which makes the channels inter-dependent.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 10, 2012
    Assignee: Ciena Corporation
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Publication number: 20110103793
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Application
    Filed: December 10, 2010
    Publication date: May 5, 2011
    Inventors: Brandon C. COLLINGS, Douglas J. Beckett, Sanjay Choudhary
  • Patent number: 7873274
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: January 18, 2011
    Assignee: Ciena Corporation
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Publication number: 20090297140
    Abstract: Two intensity modulated test signals are generated with precise frequency offset from a single laser source, and multiplexed into a combined test signal. The two modulated signals are demultiplexed at a receiver using a fixed periodic optical filter with complementary output ports. Group velocity dispersion/chromatic dispersion is measured over a large dynamic range, using pseudo-random intensity modulation and digital demodulation techniques.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 3, 2009
    Applicant: Actena LLC
    Inventors: Fred L. HEISMANN, Brandon C. Collings
  • Patent number: 7483125
    Abstract: The present invention provides a method for the wavelength independent measurement or testing of the dispersion penalty, or dispersion tolerance, of optical transmitters that comprises a single setup, measures or tests the components only to a specified amount of dispersion, and not beyond, improves yield, and reduces component cost. This method utilizes a predetermined physical length of non-dispersion shifted fiber (NDSF) combined with a dispersion compensating module (DCM) that is designed for use with non-zero dispersion shifted fiber (NZDSF). As the dependence of the dispersion with wavelength of NZDSF is different from that of NDSF, by combining the proper physical length of NDSF and DCM designed for use with NZDSF, the total dispersion of the two elements can be made constant as a function of wavelength.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: January 27, 2009
    Assignee: Ciena Corporation
    Inventor: Brandon C. Collings
  • Publication number: 20080267631
    Abstract: The present invention provides systems and methods to convert a reconfigurable optical node multiple-input multiple-output (MIMO) system to a single-input single-output (SISO) system suitable for a proportional-integral-differential (PID) control process. Advantageously, the present invention allows PID control to apply to a MIMO optical node by modeling the node as two SISO systems. The present invention optimizes the division of gain and loss between components in the reconfigurable optical node. This provides means to control the net gain and loss of a series of components when the component chain being controlled includes those components that have a single action affecting multiple channels and components that affect only one channel. The present invention utilizes control of a single quantity of amplifier gain minus attenuation for each channel, and the coupling together of all channels in the amplifier which makes the channels inter-dependent.
    Type: Application
    Filed: April 25, 2007
    Publication date: October 30, 2008
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Publication number: 20080253764
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Application
    Filed: April 10, 2007
    Publication date: October 16, 2008
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Patent number: 7415174
    Abstract: An optical channel monitor assembly for simultaneously measuring the optical power levels of multiple series of dense wavelength division multiplexed channels or the like traveling on separate optical fibers in an optical communications system includes an arrayed waveguide grating router having a first side and a second side, the first side including a first plurality of ports and the second side including a second plurality of ports, the first plurality of ports in optical communication with the second plurality of ports, wherein the first side includes a first input port for collectively receiving a first series of optical channels, wherein the second side includes a first plurality of output ports for individually delivering the first series of optical channels, wherein the second side includes a second input port for collectively receiving a second series of optical channels, and wherein the first side includes a second plurality of output ports for individually delivering the second series of optical cha
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 19, 2008
    Assignee: Ciena Corporation
    Inventor: Brandon C. Collings
  • Patent number: 7254335
    Abstract: A module that includes both an “add-in”/“drop-out” pair of ports and a “drop-in”/“add-out” pair of ports comprises an arrangement of elements that combines an optical signal having a chosen wavelength with an optical signal applied at the “add-in” port, and outputs the combined signal at the “add-out port.” Concurrently, the module extracts an optical signal with the same wavelength from an optical signal applied at the “drop-in” port signal, yielding an optical signal at the “drop-out” port that is missing that same wavelength. When the amount of information that needs to be sent from a first network node to a second, remote, node, is greater than that which a single wavelength can handle, a plurality of the above-described modules are interconnected within the first node by optically coupling the “add” ports in a “daisy chain” fashion and the “drop” ports in a “daisy chain” fashion, with each module operating at a different wavelength.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: August 7, 2007
    Assignee: CIENA Corporation
    Inventors: Brandon C. Collings, Anthony L. Lentine, Martin C. Nuss, Graham Smith, Ted K. Woodward
  • Patent number: 7103287
    Abstract: A method and apparatus for remodulating an optical data stream such that a second modulated data stream is optically transported along with a first modulated data stream. In one embodiment, an optical signal having modulated thereon a first data stream is split into a plurality of reduced power optical signals, wherein at least one of the reduced power optical signals is remodulated to additionally include a second data stream. The first data stream is preferably Manchester encoded, the data rate of the second data stream is preferably one half the data rate of the first data stream.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: September 5, 2006
    Assignee: Lucent Technologies Inc.
    Inventor: Brandon C. Collings
  • Patent number: 6724994
    Abstract: A method and apparatus for preparing groups of low duty cycle WDM transmission channels such that each group can be demultiplexed either via conventional WDM (e.g., by optically filtering each channel and receiving that channel at its line rate) or via TDM (e.g., directing an entire group of WDM channels onto a signal higher speed detector, receiving them all and demultiplexing the channels in a temporal (electronic) domain).
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: April 20, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Brandon C. Collings, Howard R. Stuart
  • Publication number: 20020118423
    Abstract: A method and apparatus for remodulating an optical data stream such that a second modulated data stream is optically transported along with a first modulated data stream. In one embodiment, an optical signal having modulated thereon a first data stream is split into a plurality of reduced power optical signals, wherein at least one of the reduced power optical signals is remodulated to additionally include a second data stream. The first data stream is preferably Manchester encoded, the data rate of the second data stream is preferably one half the data rate of the first data stream.
    Type: Application
    Filed: February 26, 2001
    Publication date: August 29, 2002
    Applicant: Lucent Technologies Inc.
    Inventor: Brandon C. Collings