Patents by Inventor Brandon D. Itkowitz

Brandon D. Itkowitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9901402
    Abstract: In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: February 27, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Tao Zhao
  • Publication number: 20180028270
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Application
    Filed: September 18, 2017
    Publication date: February 1, 2018
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Patent number: 9858475
    Abstract: In a minimally invasive surgical system, a plurality of video images is acquired. Each image includes a hand pose image. Depth data for the hand pose image is also acquired or synthesized. The hand pose image is segmented from the image using the depth data. The segmented image is combined with an acquired surgical site image using the depth data. The combined image is displayed to a person at a surgeon's console of the minimally invasive surgical system. Processing each of the video images in the plurality video images in this way reproduces the hand gesture overlaid on the video of the surgical site in the display.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: January 2, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Tao Zhao
  • Publication number: 20170333142
    Abstract: A computer-assisted medical device includes a first articulated arm, the first articulated arm having an end effector, a first joint set, a second joint set and a control unit. The control unit configures one or more joints in the first joint set to a floating mode, detects movement of the first joint set caused by a movement of the surgical table, drives the second joint set based on the movement of the surgical table, receives an instrument motion command to move the end effector while the surgical table is moving, and moves the end effector based on the instrument motion command. In some embodiments, the instrument motion command is relative to an imaging coordinate frame. In some embodiments, the imaging coordinate frame is based on a pose of an imaging device saved prior to the movement of the surgical table.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: BRANDON D. ITKOWITZ, PAUL G. GRIFFITHS, NITISH SWARUP, KAMYAR ZIAEI
  • Publication number: 20170333145
    Abstract: A system and method of monitoring control points during reactive motion includes a computer-assisted medical device. The computer-assisted medical device includes one or more articulated arms each having a control point and a control unit coupled to the one or more articulated arms. The one or more articulated arms and corresponding control points are configured to track movement of a surgical table. The control unit monitors a spatial configuration of the one or more control points by determining an expected spatial configuration of the one or more control points during the movement of the surgical table, determining an actual spatial configuration of the one or more control points during the movement of the surgical table, and determining a difference between the expected spatial configuration and the actual spatial configuration.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: Paul G. GRIFFITHS, Brandon D. ITKOWITZ, Goran A. LYNCH
  • Publication number: 20170333141
    Abstract: A system and method for an integrated surgical table includes a medical device including an articulated arm having one or more first and second joints and a control unit. The articulated arm has at least a cannula, an endoscope, or an instrument mounted distal to the first and second joints, which is inserted into a patient at a body opening. The control unit unlocks the first joints, receives a surgical table movement request, determines whether the surgical table movement request should be granted, allows the surgical table to perform the requested movement based on the determining, uses the first joints to allow the articulated arm to track movement of the body opening based on forces applied by a body wall at the body opening, and compensates for changes in a pose of the cannula, endoscope, or instrument due to the tracked movement by performing compensating motions in the second joints.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: BRANDON D. ITKOWITZ, PAUL G. GRIFFITHS, JASON HEMPHILL, GORAN A. LYNCH, DANIEL N. MILLER, PATRICK O'GRADY, NITISH SWARUP, KAMYAR ZIAEI
  • Publication number: 20170333275
    Abstract: A system and method for integrated surgical table icons includes a computer-assisted medical device. The computer-assisted medical device includes a control unit for controlling the computer-assisted medical device and a display unit coupled to the control unit having at least a surgical table status region. The control unit is configured to receive information from a surgical table describing an orientation of a top of the surgical table relative to a base of the surgical table, generate one or more icons graphically depicting the surgical table and the orientation, and send the one or more icons to the display unit for display within the surgical table status region. The surgical table is coupled to the computer-assisted medical device via a communications connection.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: BRANDON D. ITKOWITZ, PAUL W. MOHR
  • Patent number: 9814537
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: November 14, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Publication number: 20170319284
    Abstract: In a minimally invasive surgical system, a hand tracking system tracks a location of a sensor element mounted on part of a human hand. A system control parameter is generated based on the location of the part of the human hand. Operation of the minimally invasive surgical system is controlled using the system control parameter. Thus, the minimally invasive surgical system includes a hand tracking system. The hand tracking system tracks a location of part of a human hand. A controller coupled to the hand tracking system converts the location to a system control parameter, and injects into the minimally invasive surgical system a command based on the system control parameter.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Paul E. Lilagan, Tao Zhao
  • Patent number: 9789608
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 17, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Daniel J. Halabe, Tao Zhao, Simon Dimaio, Christopher J. Hasser, Catherine J. Mohr, Paul W. Mohr, David Q. Larkin, Wenyi Zhao, Brian D. Hoffman
  • Publication number: 20170282372
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 5, 2017
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20170188792
    Abstract: A medical imaging system comprises a teleoperational assembly and a processing unit including one or more processors. The processing unit is configured for receiving a roll position indicator for an imaging instrument coupled to the teleoperational assembly. The imaging instrument has a view angle greater than 0° relative (e.g., 30 degrees) to an optical axis of the imaging instrument. The processing unit is further configured for obtaining first image data from the imaging instrument coupled to the teleoperational assembly at a first roll position and for obtaining subsequent image data from the imaging instrument coupled to the teleoperational assembly at a second roll position. The processing unit is further configured for coordinating a roll movement of the imaging instrument between the first and second roll positions with a transition between presentation of the first image data and the subsequent image data.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 6, 2017
    Inventors: Brandon D. Itkowitz, Ian E. McDowall, Thomas R. Nixon, Bruce M. Schena, Niels Samby
  • Publication number: 20170181806
    Abstract: A system and method of maintaining a tool pose for a computer-assisted medical device with an articulated arm including one or more first joints and one or more second joints, a tool distal to the first joints and the second joints, and a control unit coupled to the first joints and the second joints. The control unit maintains a pose of the tool during movement of the first joints using the second joints by determining a reference coordinate frame for the tool, determining a reference transform of the tool in the reference coordinate frame prior to the movement of the first joints, determining an actual transform of the tool in the reference coordinate frame while the first joints are being moved, determining differences between the reference transform and the actual transform, and maintaining the pose of the tool by driving the second joints based on the differences.
    Type: Application
    Filed: March 17, 2015
    Publication date: June 29, 2017
    Inventors: Brandon D. ITKOWITZ, Nitish SWARUP, Paul G. GRIFFITHS, Goran LYNCH
  • Publication number: 20170172674
    Abstract: A teleoperational medical system for performing a medical procedure in a surgical field includes a dynamic guided setup system having step-by-step setup instructions for setting up a teleoperational assembly having at least one motorized surgical arm configured to assist in a surgical procedure. It also includes a user interface configured to communicate the step-by-step setup instructions to a user. The dynamic guided setup system is configured to automatically recognize completion of a first setup step based on detected physical arrangement of at least one surgical arm on a teleoperational assembly and automatically display a prompt for a subsequent setup step after the recognizing completion of the first setup step.
    Type: Application
    Filed: March 17, 2015
    Publication date: June 22, 2017
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Michael Hanuschik, Julie L. Berry, Joseph Arsanious, Paul W. Mohr, Brandon D. Itkowitz, Paul G. Griffiths
  • Publication number: 20170172670
    Abstract: A system and method of aligning with a reference target includes a computer-assisted medical device. The computer-assisted medical device includes an orientation platform, one or more first joints proximal to the orientation platform, one or more second joints distal to the orientation platform, one or more links distal to the orientation platform, a reference instrument coupled to the orientation platform by the second joints and the links; and a control unit coupled to the first joints and the second joints. The control unit determines a pose of the reference instrument. The pose includes a reference point and a reference orientation. The control unit further positions the orientation platform over the reference point using the first joints, rotates the orientation platform to align the orientation platform with the reference orientation using the first joints, and maintains the pose of the reference instrument using the second joints.
    Type: Application
    Filed: March 15, 2015
    Publication date: June 22, 2017
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nitish SWARUP, Paul G. GRIFFITHS, Brandon D. ITKOWITZ, Michael HANUSCHIK, Thomas R. NIXON
  • Publication number: 20170172676
    Abstract: A teleoperational medical system for performing a medical procedure in a surgical field includes a teleoperational assembly having a plurality of motorized surgical arms configured to assist in a surgical procedure. The motorized surgical arms have a motion limit defining a boundary beyond which the surgical arm cannot pass when the surgical arm is attached to a patient. The teleoperational medical system also includes a control system having a surgical threshold limit stored therein. The surgical threshold limit is an edge of a boundary to be potentially travelled by the surgical arm to suitably perform a surgical procedure. The control system is configured to compare the motion limit to the surgical threshold limit and notify an operator via an output device when the threshold limit is outside a range of motion bounded by the motion limit.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 22, 2017
    Inventors: Brandon D. Itkowitz, Paul W. Mohr
  • Publication number: 20170165013
    Abstract: A medical imaging system comprises a teleoperational assembly configured to control the movement of a medical instrument including an instrument tip and a processing unit including one or more processors. The processing unit is configured to determine an instrument tip position and determine a position error associated with the instrument tip position. The processing unit is also configured to determine at least one instrument tip bounding volume based upon the position error and determine if the instrument tip is within a field of view of an imaging instrument.
    Type: Application
    Filed: March 17, 2015
    Publication date: June 15, 2017
    Inventors: Brandon D. ITKOWITZ, Brian D. HOFFMAN, Paul W. MOHR
  • Publication number: 20170112580
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. In some embodiments, actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Systems and methods are also provided to keep one, some, or all joints of the kinematic chain off a hardstop or physical range of motion limit associated with the joint or to otherwise maintain a desired range of motion for one, some, or all joints of the kinematic chain when exiting a set-up mode.
    Type: Application
    Filed: March 17, 2015
    Publication date: April 27, 2017
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Paul G. Griffiths, Paul W. Mohr, Brandon D. Itkowitz, Thomas R. Nixon, Roman Devengenzo
  • Publication number: 20170112582
    Abstract: A minimally-invasive surgical system includes a slave surgical instrument having a slave surgical instrument tip and a master grip. The slave surgical instrument tip has an alignment in a common frame of reference and the master grip, which is coupled to the slave surgical instrument, has an alignment in the common frame of reference. An alignment error, in the common frame of reference, is a difference in alignment between the alignment of the slave surgical instrument tip and the alignment of the master grip. A ratcheting system (i) coupled to the master grip to receive the alignment of the master grip and (ii) coupled to the slave surgical instrument, to control motion of the slave by continuously reducing the alignment error, as the master grip moves, without autonomous motion of the slave surgical instrument tip and without autonomous motion of the master grip.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Publication number: 20170079731
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to control movement of passive or under-actuated joints by coordinated joint braking of the under-actuated joints concurrent with driving of one or more driven joints. In one aspect, the methods include driving a set-up structure by pivoting an orienting platform supporting multiple manipulators back-and-forth in opposite directions while selectively braking the under-actuated joints to inhibit passive joint movement away from a reference joint state and releasing braking to facilitate movement of the joints toward the reference until each of the under-actuated joints of the multiple manipulators are at the respective reference states. In an other aspect, a joint brake controller is provided that receives a motor torque input and converts the input to a brake control input by determining an impulse applied variable braking to deplete the impulse over time.
    Type: Application
    Filed: March 17, 2015
    Publication date: March 23, 2017
    Inventors: Paul G. Griffiths, Paul W. Mohr, Brandon D. Itkowitz