Patents by Inventor Brandon James Hopkins

Brandon James Hopkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11374226
    Abstract: Corrosion mitigation in a battery may include displacing a first flowable medium with a second flowable medium along a first electrode to interrupt fluid communication of the first flowable medium with the first electrode—thus interrupting operation of the battery—while a second electrode remains in contact with a flowable medium (e.g., one or more of the first flowable medium or another flowable medium, such as a gel). For example, a membrane (e.g., an underwater oleophobic material) may be disposed between the first electrode and the second electrode. An oil may displace an aqueous electrolyte on a first side of the membrane toward a metallic electrode while the aqueous form of the electrolyte remains in contact with an air electrode on a second side of the separator membrane disposed toward the air electrode.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: June 28, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Brandon James Hopkins, Douglas P. Hart, Yang Shao-Horn
  • Patent number: 11251475
    Abstract: Corrosion mitigation in a metal-air battery includes displacing an electrolyte within a gap of the metal-air battery with a liquid. The liquid may be substantially nonreactive with the electrolyte, and the anode of the metal-air battery is less reactive with the liquid than with the electrolyte. Upon displacement of the electrolyte from the gap, the liquid may remain in the gap of the metal-air battery to reduce the likelihood of corrosion of the anode and, therefore, reduce the power drain of the battery resulting from such corrosion. To return the metal-air battery to an activated state for generating power, the electrolyte may be moved back into the gap to displace the liquid. A fluid circuit may be in fluid communication with the gap and may displace one of the liquid and the electrolyte in the gap with the other one of the liquid and the electrolyte from the fluid circuit.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 15, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Brandon James Hopkins, Douglas P. Hart
  • Publication number: 20190326603
    Abstract: Corrosion mitigation in a battery may include displacing a first flowable medium with a second flowable medium along a first electrode to interrupt fluid communication of the first flowable medium with the first electrode—thus interrupting operation of the battery—while a second electrode remains in contact with a flowable medium (e.g., one or more of the first flowable medium or another flowable medium, such as a gel). For example, a membrane (e.g., an underwater oleophobic material) may be disposed between the first electrode and the second electrode. An oil may displace an aqueous electrolyte on a first side of the membrane toward a metallic electrode while the aqueous form of the electrolyte remains in contact with an air electrode on a second side of the separator membrane disposed toward the air electrode.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 24, 2019
    Inventors: Brandon James Hopkins, Douglas P. Hart, Yang Shao-Horn
  • Publication number: 20190123407
    Abstract: Corrosion mitigation in a metal-air battery includes displacing an electrolyte within a gap of the metal-air battery with a liquid. The liquid may be substantially nonreactive with the electrolyte, and the anode of the metal-air battery is less reactive with the liquid than with the electrolyte. Upon displacement of the electrolyte from the gap, the liquid may remain in the gap of the metal-air battery to reduce the likelihood of corrosion of the anode and, therefore, reduce the power drain of the battery resulting from such corrosion. To return the metal-air battery to an activated state for generating power, the electrolyte may be moved back into the gap to displace the liquid. A fluid circuit may be in fluid communication with the gap and may displace one of the liquid and the electrolyte in the gap with the other one of the liquid and the electrolyte from the fluid circuit.
    Type: Application
    Filed: March 1, 2017
    Publication date: April 25, 2019
    Inventors: Brandon James Hopkins, Douglas P. Hart
  • Patent number: 10230124
    Abstract: The flow cell includes first and second reservoirs having a selected volume containing a flowable redox electrode. A membrane separates charged and discharged material. An energy-extraction region includes electronically conductive porous current collectors through or adjacent to which the flowable redox electrodes flow and to which charge transfer occurs. Structure is provided for altering orientation of the flow cell whereby gravity induces flow of the flowable redox electrode between the first and second reservoirs to deliver power. By varying the angle of the cell, flow rate and power delivered on discharge or the charge rate on charge may be varied.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: March 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Brandon James Hopkins, Alexander H. Slocum, Xinwei Chen, Yet-Ming Chiang, Frank Yongzhen Fan, Ahmed Helal, Zheng Li, Kyle C. Smith, W. Craig Carter
  • Publication number: 20150155585
    Abstract: Gravity induced flow cell. The flow cell includes first and second reservoirs having a selected volume containing a flowable redox electrode. A membrane separates charged and discharged material. An energy-extraction region includes electronically conductive porous current collectors through or adjacent to which the flowable redox electrodes flow and to which charge transfer occurs. Structure is provided for altering orientation of the flow cell whereby gravity induces flow of the flowable redox electrode between the first and second reservoirs to deliver power. By varying the angle of the cell, flow rate and power delivered on discharge or the charge rate on charge may be varied.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 4, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Brandon James Hopkins, Alexander H. Slocum, Xinwei Chen, Yet-Ming Chiang, Frank Yongzhen Fan, Ahmed Helal, Zheng Li, Kyle C. Smith, W. Craig Carter