Patents by Inventor Brandon P. Linford

Brandon P. Linford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12350792
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: July 8, 2025
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Patent number: 11525309
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 13, 2022
    Assignee: US Synthetic Corporation
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Publication number: 20200130141
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 30, 2020
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Publication number: 20200024905
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Application
    Filed: August 26, 2019
    Publication date: January 23, 2020
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Patent number: 10507565
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: December 17, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Patent number: 10428589
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: October 1, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Publication number: 20170370158
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 28, 2017
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Patent number: 9765572
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: September 19, 2017
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Publication number: 20160207169
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 21, 2016
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Patent number: 9315881
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 19, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Publication number: 20150136495
    Abstract: Embodiments relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which a metal-solvent catalyst is alloyed with at least one alloying element to improve thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table bonded to the substrate. The PCD table includes diamond grains defining interstitial regions. The PCD table includes an alloy comprising at least one Group VIII metal and at least one metallic alloying element that lowers a temperature at which melting of the at least one Group VIII metal begins. The alloy includes one or more solid solution phases comprising the at least one Group VIII metal and the at least one metallic alloying element and one or more intermediate compounds comprising the at least one Group VIII metal and the at least one metallic alloying element.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: US Synthetic Corporation
    Inventors: Cody William Knuteson, Paul Douglas Jones, Brandon P. Linford, Brent R. Eddy, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay
  • Publication number: 20120241226
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 27, 2012
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford