Patents by Inventor Brandon R. Bruhn

Brandon R. Bruhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802883
    Abstract: A system and a method for dynamically optimizing an instrument system workflow based on operational monitoring and managing of a workflow for a hardware system. The system includes instrument resources and sample chambers, each resource and chamber with a dedicated sensor configured to acquire data. The system further includes a computing device communicatively connected to the instrument resources and sample chambers. The computing device includes a software application or program comprising a workflow builder, an execution engine, an analytics engine, a virtual system modeling engine, and an optional machine learning engine.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: October 31, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Darshan Thaker, Matthew E. Fowler, Samira A. Nedungadi, Daniel A. Banda Villanueva, Brandon R. Bruhn, Nenad Bozinovic, Kellen C. Mobilia
  • Patent number: 11802264
    Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: October 31, 2023
    Assignee: PHENOMEX INC.
    Inventors: Volker L. S. Kurz, Troy A. Lionberger, Eric K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Patent number: 11376591
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: July 5, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs
  • Publication number: 20210213444
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 15, 2021
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs
  • Publication number: 20210102150
    Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 8, 2021
    Inventors: Volker L.S. Kurz, Troy A. Lionberger, Eric K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Publication number: 20200371126
    Abstract: A system and a method for dynamically optimizing an instrument system workflow based on operational monitoring and managing of a workflow for a hardware system. The system includes instrument resources and sample chambers, each resource and chamber with a dedicated sensor configured to acquire data. The system further includes a computing device communicatively connected to the instrument resources and sample chambers. The computing device includes a software application or program comprising a workflow builder, an execution engine, an analytics engine, a virtual system modeling engine, and an optional machine learning engine.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventors: Darshan Thaker, Matthew E. Fowler, Samira A. Nedungadi, Daniel Banda, JR., Brandon R. Bruhn, Nenad Bozinovic, Kellen C. Mobilia
  • Patent number: 10829728
    Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 10, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Volker L. S. Kurz, Troy A. Lionberger, Eric K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Patent number: 10675625
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: June 9, 2020
    Assignee: Berkeley Lights, Inc
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs
  • Publication number: 20180298318
    Abstract: Apparatuses and methods are described for the use of optically driven bubble, convective and displacing fluidic flow to provide motive force in microfluidic devices. Alternative motive modalities are useful to selectively dislodge and displace micro-objects, including biological cells, from a variety of locations within the enclosure of a microfluidic device.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 18, 2018
    Inventors: Volker L.S. Kurz, Troy A. Lionberger, Erik K. Sackmann, Kai W. Szeto, Paul M. Lebel, Brandon R. Bruhn, Keith J. Breinlinger, Eric D. Hobbs, Andrew W. McFarland, J. Tanner Nevill, Xiaohua Wang
  • Publication number: 20170354969
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Application
    Filed: April 14, 2017
    Publication date: December 14, 2017
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs