Patents by Inventor Brandon Redding

Brandon Redding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133741
    Abstract: An apparatus includes a spectrometer receiving an optical input signal that includes an input optical spectrum. The spectrometer includes a fiber laser cavity pumped by a first optical replica of the optical input signal that generates stimulated Brillouin scattering traveling in a direction opposite to a direction of the optical input signal. The first optical replica of the optical input signal excites at least one lasing mode in the fiber laser cavity. The at least one lasing mode respectively includes at least one lasing mode frequency. The at least one lasing mode frequency is onset by a respective Brillouin frequency shift from the respective at least one input frequency. The spectrometer also includes an optical heterodyne receiver. The optical heterodyne receiver generates the electrical output signal. The spectrometer outputs a measurement of the input optical spectrum based on the respective Brillouin frequency shift and the at least one input frequency.
    Type: Application
    Filed: September 7, 2023
    Publication date: April 25, 2024
    Inventors: JOSEPH B. MURRAY, Brandon Redding, Matthew J. Murray
  • Publication number: 20230332932
    Abstract: Systems and methods are provided for enabling improved sensitivity in low-gain regimes. Embodiments of the present disclosure use polarization pulling to separate a signal of interest (e.g., amplified probe light) from the background probe light. This enables a dramatic increase in probe power and thereby increases the signal-to-noise ratio of the measurement. Embodiments of the present disclosure provide a vector subtraction technique to compensate for undesirable interference effects resulting from the finite extinction of standard polarization components (i.e. polarizing beam splitters) and polarization fluctuations. Embodiments of the present disclosure enable Brillouin sensing with improved accuracy in low-gain regimes and is particularly relevant for high-spatial resolution sensing applications.
    Type: Application
    Filed: April 18, 2023
    Publication date: October 19, 2023
    Inventors: Joseph B. Murray, Brandon Redding
  • Patent number: 11788908
    Abstract: Methods and apparatuses for quantitatively measuring strain in an optical fiber. An optical source comprising an optical beam generator and a pulse generator receives instructions from a controller and generates a pulsed optical beam in response to those instructions. The pulsed optical beam is directed into an optical fiber to generate a reflected beam from scattering centers within the optical fiber. A detector records a plurality of frames of data generated by the reflected beam, and the controller tracks an evolution of a speckle pattern carried by the reflected beam from the plurality of frames and calculates a strain induced in a section of the optical fiber from the evolution of the speckle pattern.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew J. Murray, Brandon Redding, Allen Davis, Clay Kirkendall
  • Patent number: 11719570
    Abstract: Method and apparatuses for acoustic sensing using an optical fiber are provide. An optical fiber sensor for acoustic sensing includes an optical fiber, a laser, a pump laser pulse generator, a probe laser pulse generator, a controller, and a detector. The pump laser pulse generator is configured to receive a laser beam, from the laser, and generate a pump laser pulse. Similarly, the probe laser pulse generator is configured to receive the laser beam and generate a plurality of probe laser pulses. The controller is constructed to control the pump laser pulse generator and the probe laser pulse generator to inject the pump laser pulse and the plurality of probe laser pulses, respectively, into the optical fiber at specific timings so as to generate a plurality of Brillouin gratings at a predetermined spacing. The detector is configured to receive reflected pump laser pulses from the plurality of Brillouin gratings, respectively, and provide the reflected pump laser pulses to the controller.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 8, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brandon Redding, Allen Davis
  • Publication number: 20210088408
    Abstract: Methods and apparatuses for quantitatively measuring strain in an optical fiber. An optical source comprising an optical beam generator and a pulse generator receives instructions from a controller and generates a pulsed optical beam in response to those instructions. The pulsed optical beam is directed into an optical fiber to generate a reflected beam from scattering centers within the optical fiber. A detector records a plurality of frames of data generated by the reflected beam, and the controller tracks an evolution of a speckle pattern carried by the reflected beam from the plurality of frames and calculates a strain induced in a section of the optical fiber from the evolution of the speckle pattern.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 25, 2021
    Inventors: Matthew J. Murray, Brandon Redding, Allen Davis, Clay Kirkendall
  • Patent number: 10680401
    Abstract: The present disclosure relates more particularly to active optical fibers, amplified spontaneous emission (ASE) sources using such active optical fibers, and imaging and detection systems and methods using such ASE sources. In one aspect, the disclosure provides an active optical fiber that includes a rare earth-doped gain core configured to emit radiation at at least a peak wavelength emitted wavelength when pumped with pump radiation having a pump wavelength; a pump core surrounding the gain core; and a cladding surrounding the pump core, wherein the value M=16R2(NA)2/?2 in which R is the gain core radius, NA is the active optical fiber numerical aperture, and ? is the peak emitted wavelength, is at least 50, or at least 100. The present disclosure also provides an optical source that includes the optical fiber coupled to a pump source.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: June 9, 2020
    Assignees: Nufern, Yale University
    Inventors: Brandon Redding, Peyman Ahmadi, Martin Seifert, Hui Cao
  • Publication number: 20200096385
    Abstract: Method and apparatuses for acoustic sensing using an optical fiber are provide. An optical fiber sensor for acoustic sensing includes an optical fiber, a laser, a pump laser pulse generator, a probe laser pulse generator, a controller, and a detector. The pump laser pulse generator is configured to receive a laser beam, from the laser, and generate a pump laser pulse. Similarly, the probe laser pulse generator is configured to receive the laser beam and generate a plurality of probe laser pulses. The controller is constructed to control the pump laser pulse generator and the probe laser pulse generator to inject the pump laser pulse and the plurality of probe laser pulses, respectively, into the optical fiber at specific timings so as to generate a plurality of Brillouin gratings at a predetermined spacing. The detector is configured to receive reflected pump laser pulses from the plurality of Brillouin gratings, respectively, and provide the reflected pump laser pulses to the controller.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Inventors: Brandon Redding, Allen Davis
  • Patent number: 10432871
    Abstract: Systems and methods are provided for imaging using complex lasers. In general, a complex laser may be used as an electromagnetic source for an imaging application. The use of a lower spatial coherence configured complex laser in imaging applications may advantageously mitigate coherent artifacts in imaging such as cross-talk and speckle and improve overall image quality. Imaging applications where a complex laser may be useful include both incoherent imaging applications, such as digital light projectors and traditional microscopy, and coherent imaging applications, such as optical coherence tomography (OCT) and holography. The systems and methods provided also enable controlling the degree of spatial coherence of a complex laser.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 1, 2019
    Assignee: Yale University
    Inventors: Hui Cao, Brandon Redding, Michael Choma
  • Publication number: 20160352066
    Abstract: The present disclosure relates more particularly to active optical fibers, amplified spontaneous emission (ASE) sources using such active optical fibers, and imaging and detection systems and methods using such ASE sources. In one aspect, the disclosure provides an active optical fiber that includes a rare earth-doped gain core configured to emit radiation at at least a peak wavelength emitted wavelength when pumped with pump radiation having a pump wavelength; a pump core surrounding the gain core; and a cladding surrounding the pump core, wherein the value M=16R2(NA)2/?2 in which R is the gain core radius, NA is the active optical fiber numerical aperture, and ? is the peak emitted wavelength, is at least 50, or at least 100. The present disclosure also provides an optical source that includes the optical fiber coupled to a pump source.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 1, 2016
    Inventors: Brandon Redding, Peyman Ahmadi, Martin Siefert, Addi Hui Coag
  • Publication number: 20140111671
    Abstract: Systems and methods are provided for imaging using complex lasers. In general, a complex laser may be used as an electromagnetic source for an imaging application. The use of a lower spatial coherence configured complex laser in imaging applications may advantageously mitigate coherent artifacts in imaging such as cross-talk and speckle and improve overall image quality. Imaging applications where a complex laser may be useful include both incoherent imaging applications, such as digital light projectors and traditional microscopy, and coherent imaging applications, such as optical coherence tomography (OCT) and holography. The systems and methods provided also enable controlling the degree of spatial coherence of a complex laser.
    Type: Application
    Filed: April 16, 2012
    Publication date: April 24, 2014
    Applicant: YALE UNVIVERSITY
    Inventors: Hui Cao, Brandon Redding, Michael Choma