Patents by Inventor Brandon Ripley

Brandon Ripley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190217302
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Patent number: 10226770
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: March 12, 2019
    Assignee: Fluidigm Corporation
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Patent number: 9913941
    Abstract: A fluid path set for a fluid delivery system includes a tube coil that is designed to optimally position one or more volumes of a pharmaceutical within an ionization chamber to measure and prepare a pharmaceutical dose for administration to a patient. Methods for priming at least a portion of the fluid path set include placing a tubing section of the fluid path set in fluid connection with a source of a radiopharmaceutical, and placing the tube coil within a dose calibrator of the fluid delivery system. A volume of the radiopharmaceutical may be pumped through the tube coil, the tubing section, and an additional tubing section, and the dose calibrator may be monitored to determine if a measured activity level is substantially equal to or above a predetermined activity level, and if so, it may be concluded that the tubing section of the fluid path set has been primed.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: March 13, 2018
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Paul J. Miller, James H. Shigeno, Jared E. Neff, Leon J. Tate, Joseph E. Bisegna, Edward Ilgenfritz, Scott R. Griffith, Brandon Ripley
  • Publication number: 20160114327
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Application
    Filed: September 24, 2015
    Publication date: April 28, 2016
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Patent number: 9168531
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 27, 2015
    Assignee: FLUIDIGM CORPORATION
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung
  • Publication number: 20130078610
    Abstract: A thermal cycler for a microfluidic device includes a controller operable to provide a series of electrical signals, a heat sink, and a heating element in thermal communication with the heat sink and operable to receive the series of electrical signals from the controller. The thermal cycler also includes a thermal chuck in thermal communication with the heating element. The thermal chuck comprises a heating surface operable to make thermal contact with the microfluidic device. The heating surface is characterized by a temperature ramp rate between 2.5 degrees Celsius per second and 5.5 degrees Celsius per second and a temperature difference between a first portion of the heating surface supporting a first portion of the microfluidic device and a second portion of the heating surface supporting a second portion of the microfluidic device is less than 0.25° C.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 28, 2013
    Applicant: Fluidigm Corporation
    Inventors: Jake Kimball, Brandon Ripley, Gang Sun, Dominique Toppani, Myo Thu Maung