Patents by Inventor Brandon Robinson

Brandon Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11634915
    Abstract: A machine for distributing material from a package of compressed loosefill insulation material is provided. The machine includes a chute having an inlet end and an outlet end. The inlet end is configured to receive compressed loosefill insulation material. A lower unit has a shredding chamber configured to receive the compressed loosefill insulation material from the outlet end of the chute. The shredding chamber includes a plurality of shredders configured to condition the loosefill insulation material. The shredders include a shredder shaft and a plurality of vane assemblies. The vane assemblies are oriented such that adjacent vane assemblies are offset from each other by an angle of about 45° to about 75°. A discharge mechanism receives the loosefill insulation material exiting the shredding chamber and distributes the loosefill insulation material into an airstream and a blower is configured to provide the airstream flowing through the discharge mechanism.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: April 25, 2023
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: David M. Cook, Christopher M. Relyea, Brandon Robinson
  • Publication number: 20230015280
    Abstract: A processor coupled to a first communication device produces and transmits a first encoded vector and a second encoded vector to a second communication device via a communication channel that applies a channel transformation to the encoded vectors during transmission. A processor coupled to the second communication device receives the transformed signals, constructs a matrix based on the transformed signals, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. A first symbol of the second encoded vector and a second symbol of the second encoded vector are sent to the first communication device for identification of the message.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 19, 2023
    Applicant: Rampart Communications, Inc.
    Inventor: Matthew Brandon ROBINSON
  • Patent number: 11548621
    Abstract: An aircraft airfoil having an internal thrust unit and an aircraft having the same are provided. The airfoil includes a skin structure having a lower surface extending between a leading edge and a trailing edge of the airfoil over which air flows during forward flight. A thrust system is connected to the skin structure and includes a thrust unit generating an airflow that is at least partially expelled through an outlet in the lower surface of the skin structure. At least one outlet cover is connected to the skin structure and movable between a forward flight position, in which the at least one outlet cover is configured to deflect the airflow in an at least partially rearward direction, and a vertical flight position, in which the at least one outlet cover is substantially clear of the airflow which is directed in an at least partially downward direction.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: January 10, 2023
    Assignee: Horizon Aircraft Inc.
    Inventors: Eric Brian Robinson, Eric Brandon Robinson
  • Patent number: 11492812
    Abstract: A machine for distributing loosefill insulation material from a package of compressed loosefill insulation material. The machine includes a chute having an inlet end and an outlet end. The inlet end receives compressed loosefill insulation material. The chute has a first portion and a second portion. The first portion forms an angle with the second portion. A shredding chamber receives the compressed loosefill insulation material from the chute. The shredding chamber forms conditioned loosefill insulation material. A discharge mechanism is configured to distribute the conditioned loosefill insulation material into an airstream. A blower provides the airstream. The angle between the first and second portions of the chute is configured to form a bend in the package of compressed loosefill insulation material. The bend in the package of compressed loosefill insulation material is configured to control the descent and direction of the loosefill insulation material entering the shredding chamber.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: November 8, 2022
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: David M. Cook, Christopher M. Relyea, Brandon Robinson
  • Publication number: 20220353114
    Abstract: A system includes first and second sets of communication devices. A processor coupled to the first set of communication devices produces a first encoded vector and transmits the first encoded vector to the second set of communication devices via a communication channel that applies a channel transformation to the first encoded vector during transmission. A processor coupled to the second set of communication devices receives the transformed signal, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. The second encoded vector is sent to the first set of communication devices for identification of the message.
    Type: Application
    Filed: June 21, 2022
    Publication date: November 3, 2022
    Applicant: Rampart Communications, Inc.
    Inventor: Matthew Brandon ROBINSON
  • Patent number: 11476912
    Abstract: A processor coupled to a first communication device produces and transmits a first encoded vector and a second encoded vector to a second communication device via a communication channel that applies a channel transformation to the encoded vectors during transmission. A processor coupled to the second communication device receives the transformed signals, constructs a matrix based on the transformed signals, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. A first symbol of the second encoded vector and a second symbol of the second encoded vector are sent to the first communication device for identification of the message.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: October 18, 2022
    Assignee: RAMPART COMMUNICATIONS, INC.
    Inventor: Matthew Brandon Robinson
  • Publication number: 20220281576
    Abstract: An underwater propulsion device is disclosed comprising two sleeves for fitting around each of a user's lower legs, with each sleeve mounting a propulsion unit, and the sleeves being connectable by a bar between them during underwater operation of the device by the user.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Inventors: Brandon Robinson, Lowell Kim Robinson, Marc Barber
  • Publication number: 20220255728
    Abstract: A method includes receiving data and a plurality of values at a processor. The data can include real-valued data and/or complex data. The plurality of values includes one of a plurality of random values or a plurality of pseudo-random values. The method also includes generating an automorphism, via the processor, based on the plurality of values, and partitioning the data, via the processor, into a plurality of data blocks. The automorphism includes at least one of a linear transformation or an antilinear transformation. Each data block from the plurality of data blocks can have a predefined size. The method also includes applying the automorphism, via the processor, to each data block from plurality of data blocks, to produce a plurality of transformed data blocks, and causing transmission of a signal representing the plurality of transformed data blocks.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 11, 2022
    Applicant: Rampart Communications, Inc.
    Inventors: Matthew Brandon ROBINSON, Andrew Keith PALMISANO
  • Publication number: 20220238750
    Abstract: A heterostructure with reduced optical losses is disclosed. The heterostructure includes a set of n-type layers; an active region that generates radiation at a peak emitted wavelength; and a set of p-type layers located adjacent to the active region. A reflective structure can be located adjacent to the set of p-type layers. A thickness of the set of p-type layers can be configured to promote constructive interference of the reflected radiation with radiation emitted by the active region in a direction toward the set of n-type layers.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 28, 2022
    Inventors: Joseph Dion, Devendra Diwan, Brandon A. Robinson, Rakesh B. Jain
  • Patent number: 11394588
    Abstract: A system includes first and second sets of communication devices. A processor coupled to the first set of communication devices produces a first encoded vector and transmits the first encoded vector to the second set of communication devices via a communication channel that applies a channel transformation to the first encoded vector during transmission. A processor coupled to the second set of communication devices receives the transformed signal, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. The second encoded vector is sent to the first set of communication devices for identification of the message.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: July 19, 2022
    Assignee: Rampart Communications, Inc.
    Inventor: Matthew Brandon Robinson
  • Publication number: 20220209831
    Abstract: An apparatus includes a first communication device with multiple antennas, operably coupled to a processor and configured to access a codebook of transformation matrices. The processor generates a set of symbols based on an incoming data, and applies a permutation to each of the symbols to produce a set of permuted symbols. The processor transforms each of the permuted symbols based on at least one primitive transformation matrix, to produce a set of transformed symbols. The processor applies, to each of the transformed symbols, a precode matrix selected from the codebook of transformation matrices to produce a set of precoded symbols. The codebook of transformation matrices is accessible to a second communication device. The processor sends a signal to cause transmission, to the second communication device, of multiple signals, each representing a precoded symbol from the set of precoded symbols, each of the signals transmitted using a unique antenna from the plurality of antennas.
    Type: Application
    Filed: March 15, 2022
    Publication date: June 30, 2022
    Applicant: Rampart Communications, Inc.
    Inventor: Matthew Brandon ROBINSON
  • Patent number: 11345453
    Abstract: An underwater propulsion device is disclosed comprising two sleeves for fitting around each of a user's lower legs, with each sleeve mounting a propulsion unit, and the sleeves being connectable by a bar between them during underwater operation of the device by the user.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: May 31, 2022
    Inventors: Brandon Robinson, Lowell Kim Robinson, Marc Barber
  • Patent number: 11336341
    Abstract: An apparatus includes a first communication device with multiple antennas, operably coupled to a processor and configured to access a codebook of transformation matrices. The processor generates a set of symbols based on an incoming data, and applies a permutation to each of the symbols to produce a set of permuted symbols. The processor transforms each of the permuted symbols based on at least one primitive transformation matrix, to produce a set of transformed symbols. The processor applies, to each of the transformed symbols, a precode matrix selected from the codebook of transformation matrices to produce a set of precoded symbols. The codebook of transformation matrices is accessible to a second communication device. The processor sends a signal to cause transmission, to the second communication device, of multiple signals, each representing a precoded symbol from the set of precoded symbols, each of the signals transmitted using a unique antenna from the plurality of antennas.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: May 17, 2022
    Assignee: Rampart Communications, Inc.
    Inventor: Matthew Brandon Robinson
  • Patent number: 11258487
    Abstract: A method includes generating a set of symbols based on an incoming data vector. The set of symbols includes K symbols, K being a positive integer. A first transformation matrix including an equiangular tight frame (ETF) transformation or a nearly equiangular tight frame (NETF) transformation is generated, having dimensions N×K, where N is a positive integer and has a value less than K. A second transformation matrix having dimensions K×K is generated based on the first transformation matrix. A third transformation matrix having dimensions K×K is generated by performing a series of unitary transformations on the second transformation matrix. A first data vector is transformed into a second data vector having a length N based on the third transformation matrix and the set of symbols. A signal representing the second data vector is sent to a transmitter for transmission of a signal representing the second data vector to a receiver.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 22, 2022
    Assignee: Rampart Communications, Inc.
    Inventor: Matthew Brandon Robinson
  • Publication number: 20220006504
    Abstract: A processor coupled to a first communication device produces and transmits a first encoded vector and a second encoded vector to a second communication device via a communication channel that applies a channel transformation to the encoded vectors during transmission. A processor coupled to the second communication device receives the transformed signals, constructs a matrix based on the transformed signals, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. A first symbol of the second encoded vector and a second symbol of the second encoded vector are sent to the first communication device for identification of the message.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: Rampart Communications, Inc.
    Inventor: Matthew Brandon Robinson
  • Publication number: 20210409193
    Abstract: A method for implementing a fast UBDM transform includes receiving a first, input vector via a processor, and partitioning the first vector to produce a magnitude vector and a sign vector. A second vector, including a modified magnitude vector and a modified sign vector, is generated by: applying a permutation to the magnitude vector to produce the modified magnitude vector, converting the sign vector, based on an algorithm, into an intermediate sign vector, and applying nonlinear layers to the intermediate sign vector. Each nonlinear layer includes a permutation, an S-box transformation, a diffusive linear operation and/or an Xor operation. Multiple linear layers are applied to the second vector to produce a third vector, the third vector being a transformed version of the first vector. A first signal representing the third vector is sent to at least one transmitter for transmission of a second signal representing the transformed data vector.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Inventor: Matthew Brandon ROBINSON
  • Publication number: 20210371277
    Abstract: In one aspect, the disclosure relates to CO2-free and/or low-CO2 methods of co-producing hydrogen and solid forms of carbon via natural gas decomposition using microwave radiation. The methods are efficient, self-sustaining, and environmentally benign. In a further aspect, the disclosure relates to recyclable and recoverable catalysts useful for enhancing the disclosed methods, wherein the catalysts are supported by solid forms of carbon. Methods for recycling the catalysts are also disclosed. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: May 4, 2021
    Publication date: December 2, 2021
    Inventors: Jianli HU, Changle JIANG, Brandon ROBINSON, Xinwei BAI, I-Wen WANG
  • Patent number: 11159220
    Abstract: A processor coupled to a first communication device produces and transmits a first encoded vector and a second encoded vector to a second communication device via a communication channel that applies a channel transformation to the encoded vectors during transmission. A processor coupled to the second communication device receives the transformed signals, constructs a matrix based on the transformed signals, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. A first symbol of the second encoded vector and a second symbol of the second encoded vector are sent to the first communication device for identification of the message.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 26, 2021
    Assignee: Rampart Communications, Inc.
    Inventor: Matthew Brandon Robinson
  • Publication number: 20210296525
    Abstract: A heterostructure with reduced optical losses is disclosed. The heterostructure includes a set of n-type layers; an active region that generates radiation at a peak emitted wavelength; and a set of p-type layers located adjacent to the active region. A reflective structure can be located adjacent to the set of p-type layers. A thickness of the set of p-type layers can be configured to promote constructive interference of the reflected radiation with radiation emitted by the active region in a direction toward the set of n-type layers.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Inventors: Joseph Dion, Devendra Diwan, Brandon A. Robinson, Rakesh B. Jain
  • Publication number: 20210250075
    Abstract: A processor coupled to a first communication device produces and transmits a first encoded vector and a second encoded vector to a second communication device via a communication channel that applies a channel transformation to the encoded vectors during transmission. A processor coupled to the second communication device receives the transformed signals, constructs a matrix based on the transformed signals, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. A first symbol of the second encoded vector and a second symbol of the second encoded vector are sent to the first communication device for identification of the message.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Inventor: Matthew Brandon ROBINSON