Patents by Inventor Brandon ROTHROCK

Brandon ROTHROCK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240062372
    Abstract: Systems and methods are described herein for processing electronic medical images to predict a biomarker's presence, including receiving one or more digital medical images, the one or more digital medical images being of at least one pathology specimen associated with a patient. A machine learning system may determine a biomarker expression level prediction for the one or more digital medical images. The biomarker expression level prediction may be based on a determined transcriptomic score and protein expression score for the one or more digital medical images. A slide overlay indicating a region of tissue on the one or more digital medical images that is most likely to contribute to the slide level biomarker expression prediction may be generated.
    Type: Application
    Filed: August 17, 2023
    Publication date: February 22, 2024
    Inventors: Jillian SUE, Marc GOLDFINGER, Brandon ROTHROCK, Matthew LEE
  • Publication number: 20230360414
    Abstract: A method of using a machine learning model to output a task-specific prediction may include receiving a digitized cytology image of a cytology sample and applying a machine learning model to isolate cells of the digitized cytology image. The machine learning model may include identifying a plurality of sub-portions of the digitized cytology image, identifying, for each sub-portion of the plurality of sub-portions, either background or cell, and determining cell sub-images of the digitized cytology image. Each cell sub-image may comprise a cell of the digitized cytology image, based on the identifying either background or cell. The method may further comprise determining a plurality of features based on the cell sub-images, each of the cell sub-images being associated with at least one of the plurality of features, determining an aggregated feature based on the plurality of features, and training a machine learning model to predict a target task based on the aggregated feature.
    Type: Application
    Filed: July 3, 2023
    Publication date: November 9, 2023
    Inventors: Brandon ROTHROCK, Jillian SUE, Matthew HOULISTON, Patricia RACITI, Leo GRADY
  • Patent number: 11721115
    Abstract: A method of using a machine learning model to output a task-specific prediction may include receiving a digitized cytology image of a cytology sample and applying a machine learning model to isolate cells of the digitized cytology image. The machine learning model may include identifying a plurality of sub-portions of the digitized cytology image, identifying, for each sub-portion of the plurality of sub-portions, either background or cell, and determining cell sub-images of the digitized cytology image. Each cell sub-image may comprise a cell of the digitized cytology image, based on the identifying either background or cell. The method may further comprise determining a plurality of features based on the cell sub-images, each of the cell sub-images being associated with at least one of the plurality of features, determining an aggregated feature based on the plurality of features, and training a machine learning model to predict a target task based on the aggregated feature.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: August 8, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Jillian Sue, Matthew Houliston, Patricia Raciti, Leo Grady
  • Publication number: 20230245477
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Application
    Filed: March 20, 2023
    Publication date: August 3, 2023
    Inventors: Brandon ROTHROCK, Christopher KANAN, Julian VIRET, Thomas FUCHS, Leo GRADY
  • Patent number: 11663838
    Abstract: A method of using a machine learning model to output a task-specific prediction may include receiving a digitized cytology image of a cytology sample and applying a machine learning model to isolate cells of the digitized cytology image. The machine learning model may include identifying a plurality of sub-portions of the digitized cytology image, identifying, for each sub-portion of the plurality of sub-portions, either background or cell, and determining cell sub-images of the digitized cytology image. Each cell sub-image may comprise a cell of the digitized cytology image, based on the identifying either background or cell. The method may further comprise determining a plurality of features based on the cell sub-images, each of the cell sub-images being associated with at least one of the plurality of features, determining an aggregated feature based on the plurality of features, and training a machine learning model to predict a target task based on the aggregated feature.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: May 30, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Jillian Sue, Matthew Houliston, Patricia Raciti, Leo Grady
  • Patent number: 11640719
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: May 2, 2023
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Christopher Kanan, Julian Viret, Thomas Fuchs, Leo Grady
  • Publication number: 20220358650
    Abstract: Systems and methods are disclosed for identifying formerly conjoined pieces of tissue in a specimen, comprising receiving one or more digital images associated with a pathology specimen, identifying a plurality of pieces of tissue by applying an instance segmentation system to the one or more digital images, the instance segmentation system having been generated by processing a plurality of training images, determining, using the instance segmentation system, a prediction of whether any of the plurality of pieces of tissue were formerly conjoined, and outputting at least one instance segmentation to a digital storage device and/or display, the instance segmentation comprising an indication of whether any of the plurality of pieces of tissue were formerly conjoined.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Antoine SAINSON, Brandon ROTHROCK, Razik YOUSFI, Patricia RACITI, Matthew HANNA, Christopher KANAN
  • Publication number: 20220343508
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Application
    Filed: July 12, 2022
    Publication date: October 27, 2022
    Inventors: Brandon ROTHROCK, Christopher KANAN, Julian VIRET, Thomas FUCHS, Leo GRADY
  • Patent number: 11430117
    Abstract: Systems and methods are disclosed for identifying formerly conjoined pieces of tissue in a specimen, comprising receiving one or more digital images associated with a pathology specimen, identifying a plurality of pieces of tissue by applying an instance segmentation system to the one or more digital images, the instance segmentation system having been generated by processing a plurality of training images, determining, using the instance segmentation system, a prediction of whether any of the plurality of pieces of tissue were formerly conjoined, and outputting at least one instance segmentation to a digital storage device and/or display, the instance segmentation comprising an indication of whether any of the plurality of pieces of tissue were formerly conjoined.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: August 30, 2022
    Assignee: PAIGE.AI, Inc.
    Inventors: Antoine Sainson, Brandon Rothrock, Razik Yousfi, Patricia Raciti, Matthew Hanna, Christopher Kanan
  • Patent number: 11430116
    Abstract: Systems and methods are disclosed for identifying formerly conjoined pieces of tissue in a specimen, comprising receiving one or more digital images associated with a pathology specimen, identifying a plurality of pieces of tissue by applying an instance segmentation system to the one or more digital images, the instance segmentation system having been generated by processing a plurality of training images, determining, using the instance segmentation system, a prediction of whether any of the plurality of pieces of tissue were formerly conjoined, and outputting at least one instance segmentation to a digital storage device and/or display, the instance segmentation comprising an indication of whether any of the plurality of pieces of tissue were formerly conjoined.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: August 30, 2022
    Assignee: PAIGE.AI, Inc.
    Inventors: Antoine Sainson, Brandon Rothrock, Razik Yousfi, Patricia Raciti, Matthew Hanna, Christopher Kanan
  • Patent number: 11423547
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: August 23, 2022
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Christopher Kanan, Julian Viret, Thomas Fuchs, Leo Grady
  • Publication number: 20220138450
    Abstract: A method of using a machine learning model to output a task-specific prediction may include receiving a digitized cytology image of a cytology sample and applying a machine learning model to isolate cells of the digitized cytology image. The machine learning model may include identifying a plurality of sub-portions of the digitized cytology image, identifying, for each sub-portion of the plurality of sub-portions, either background or cell, and determining cell sub-images of the digitized cytology image. Each cell sub-image may comprise a cell of the digitized cytology image, based on the identifying either background or cell. The method may further comprise determining a plurality of features based on the cell sub-images, each of the cell sub-images being associated with at least one of the plurality of features, determining an aggregated feature based on the plurality of features, and training a machine learning model to predict a target task based on the aggregated feature.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 5, 2022
    Inventors: Brandon ROTHROCK, Jillian SUE, Matthew HOULISTON, Patricia RACITI, Leo GRADY
  • Publication number: 20220139533
    Abstract: A method of using a machine learning model to output a task-specific prediction may include receiving a digitized cytology image of a cytology sample and applying a machine learning model to isolate cells of the digitized cytology image. The machine learning model may include identifying a plurality of sub-portions of the digitized cytology image, identifying, for each sub-portion of the plurality of sub-portions, either background or cell, and determining cell sub-images of the digitized cytology image. Each cell sub-image may comprise a cell of the digitized cytology image, based on the identifying either background or cell. The method may further comprise determining a plurality of features based on the cell sub-images, each of the cell sub-images being associated with at least one of the plurality of features, determining an aggregated feature based on the plurality of features, and training a machine learning model to predict a target task based on the aggregated feature.
    Type: Application
    Filed: October 27, 2021
    Publication date: May 5, 2022
    Inventors: Brandon ROTHROCK, Jillian SUE, Matthew HOULISTON, Patricia RACITI, Leo GRADY
  • Publication number: 20220108446
    Abstract: Systems and methods are disclosed for identifying formerly conjoined pieces of tissue in a specimen, comprising receiving one or more digital images associated with a pathology specimen, identifying a plurality of pieces of tissue by applying an instance segmentation system to the one or more digital images, the instance segmentation system having been generated by processing a plurality of training images, determining, using the instance segmentation system, a prediction of whether any of the plurality of pieces of tissue were formerly conjoined, and outputting at least one instance segmentation to a digital storage device and/or display, the instance segmentation comprising an indication of whether any of the plurality of pieces of tissue were formerly conjoined.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 7, 2022
    Inventors: Antoine SAINSON, Brandon ROTHROCK, Razik YOUSFI, Patricia RACITI, Matthew HANNA, Christopher KANAN
  • Publication number: 20220108444
    Abstract: Systems and methods are disclosed for identifying formerly conjoined pieces of tissue in a specimen, comprising receiving one or more digital images associated with a pathology specimen, identifying a plurality of pieces of tissue by applying an instance segmentation system to the one or more digital images, the instance segmentation system having been generated by processing a plurality of training images, determining, using the instance segmentation system, a prediction of whether any of the plurality of pieces of tissue were formerly conjoined, and outputting at least one instance segmentation to a digital storage device and/or display, the instance segmentation comprising an indication of whether any of the plurality of pieces of tissue were formerly conjoined.
    Type: Application
    Filed: September 9, 2021
    Publication date: April 7, 2022
    Inventors: Antoine SAINSON, Brandon ROTHROCK, Razik YOUSFI, Patricia RACITI, Matthew HANNA, Christopher KANAN
  • Publication number: 20220005201
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Brandon ROTHROCK, Christopher KANAN, Julian VIRET, Thomas FUCHS, Leo GRADY
  • Patent number: 11176676
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: November 16, 2021
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Christopher Kanan, Julian Viret, Thomas Fuchs, Leo Grady
  • Publication number: 20210233251
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 29, 2021
    Inventors: Brandon ROTHROCK, Christopher KANAN, Julian VIRET, Thomas FUCHS, Leo GRADY