Patents by Inventor Breanna E. DiAndreth

Breanna E. DiAndreth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141324
    Abstract: The present disclosure, at least in part, provides RNA cleavage based engineered bi-stable toggle switch utilizing the Programmable Endonucleolytic Scission-Induced Stability Tuning (PERSIST) platform. Also provided herein, are vectors encoding the engineered bi-stable toggle switch, and uses thereof.
    Type: Application
    Filed: May 1, 2023
    Publication date: May 2, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Breanna E. DiAndreth, Noreen Wauford
  • Publication number: 20240124877
    Abstract: Provided herein are genetic circuits and encoded RNA transcripts that produce an output molecule in response to an RNA cleavage event that removes a degradation signal. In some embodiments, the genetic circuits described herein may be used for detecting RNA cleaver activities (e.g., in a cell). Methods of using the genetic circuits described herein in diagnostic or therapeutic applications are also provided.
    Type: Application
    Filed: September 14, 2023
    Publication date: April 18, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Breanna E. DiAndreth
  • Patent number: 11795455
    Abstract: Provided herein are genetic circuits and encoded RNA transcripts that produce an output molecule in response to an RNA cleavage event that removes a degradation signal. In some embodiments, the genetic circuits described herein may be used for detecting RNA cleaver activities (e.g., in a cell). Methods of using the genetic circuits described herein in diagnostic or therapeutic applications are also provided.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 24, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Breanna E. DiAndreth
  • Publication number: 20230159948
    Abstract: The present disclosure, at least in part, relates to an engineered incoherent feed forward loop (iFFL) comprising a first transcription unit encoding an endoribonuclease and a second transcription unit encoding an output molecule and an endoribonuclease target site located in the 5? UTR of the output molecule coding sequence. The engineered iFFL, at least in part, can be used for sustained expression of an output molecule despite of transcription resource disturbance in a given environment.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 25, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Ross D. Jones, Breanna E. DiAndreth, Domitilla Del Vecchio, Yili Qian
  • Publication number: 20210292784
    Abstract: The present disclosure, at least in part, relates to an engineered incoherent feed forward loop (iFFL) comprising a first transcription unit encoding an endoribonuclease and a second transcription unit encoding an output molecule and an endoribonuclease target site located in the 5? UTR of the output molecule coding sequence. The engineered iFFL, at least in part, can be used for sustained expression of an output molecule despite of transcription resource disturbance in a given environment.
    Type: Application
    Filed: January 20, 2021
    Publication date: September 23, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Ross D. Jones, Breanna E. DiAndreth, Domitilla Del Vecchio, Yili Qian
  • Publication number: 20210246439
    Abstract: The present disclosure, at least in part, provides RNA cleavage based engineered bi-stable toggle switch utilizing the Programmable Endonucleolytic Scission-Induced Stability Tuning (PERSIST) platform. Also provided herein, are vectors encoding the engineered bi-stable toggle switch, and uses thereof.
    Type: Application
    Filed: December 15, 2020
    Publication date: August 12, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Breanna E. DiAndreth, Noreen Wauford
  • Publication number: 20190032054
    Abstract: Provided herein are genetic circuits and encoded RNA transcripts that produce an output molecule in response to an RNA cleavage event that removes a degradation signal. In some embodiments, the genetic circuits described herein may be used for detecting RNA cleaver activities (e.g., in a cell). Methods of using the genetic circuits described herein in diagnostic or therapeutic applications are also provided.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Breanna E. DiAndreth