Patents by Inventor Brendan P. Eckelman

Brendan P. Eckelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10745466
    Abstract: This invention relates generally to molecules that specifically bind bacterial V-tip proteins of the type III secretion system of Gram negative bacteria such as PcrV from Pseudomonas aeruginosa. More specifically, this invention relates to molecules that block the injection of effector molecules into target cells. This invention also relates to molecules that specifically bind to bacterial lipoproteins, such as OprI. The molecules of the present invention are monospecific or multispecific and can bind their target antigen in a monovalent or multivalent manner. The invention also relates generally to molecules that specifically bind bacterial cell surface proteins such as OprI, and to methods of use these molecules in a variety of therapeutic, diagnostic, and/or prophylactic indications.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: August 18, 2020
    Assignee: Inhibrx, Inc.
    Inventors: Andrew Hollands, John C. Timmer, Quinn Deveraux, Brendan P. Eckelman
  • Patent number: 10730929
    Abstract: This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin and second polypeptide comprising of at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; and an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: August 4, 2020
    Assignee: Inhibrx LP
    Inventors: Brendan P. Eckelman, John C. Timmer, Peter L. Nguy, Grant B. Guenther, Quinn Deveraux
  • Patent number: 10723785
    Abstract: This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin and second polypeptide comprising of at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a whey acidic protein (WAP) domain containing polypeptide or a sequence derived from a WAP domain containing polypeptide; and an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 28, 2020
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Peter L. Nguy, Grant B. Guenther, Quinn Deveraux
  • Publication number: 20200199243
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Application
    Filed: October 15, 2019
    Publication date: June 25, 2020
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Macedo, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Publication number: 20200190193
    Abstract: Provided herein are binding polypeptides that specifically bind PD-1. More specifically, provided herein are fusion proteins, including multivalent and/or multispecific constructs and chimeric antigen receptors, that bind PD-1. Also provided are pharmaceutical compositions containing the polypeptides, nucleic acid molecules encoding the polypeptides and vectors and cells thereof, and methods of use and uses of the provided PD-1 binding polypeptides for treating diseases and conditions, such as cancer.
    Type: Application
    Filed: October 11, 2019
    Publication date: June 18, 2020
    Applicant: InhibRx, Inc.
    Inventors: Rajay A. PANDIT, John C. TIMMER, Angelica N. SANABRIA, Florian SULZMAIER, Brendan P. ECKELMAN
  • Publication number: 20200140525
    Abstract: The invention provides modifications within human or humanized single domain antibody fragments (sdAbs) that prevent recognition by pre-existing antibodies, to isolated polypeptides that include these modifications, and to methods and uses thereof.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 7, 2020
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Quinn Deveraux
  • Publication number: 20200115437
    Abstract: This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin and second polypeptide comprising of at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; and an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
    Type: Application
    Filed: April 24, 2019
    Publication date: April 16, 2020
    Inventors: Brendan P. ECKELMAN, John C. TIMMER, Quinn DEVERAUX
  • Publication number: 20200102371
    Abstract: This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin and second polypeptide comprising of at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; and an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
    Type: Application
    Filed: April 24, 2019
    Publication date: April 2, 2020
    Inventors: Brendan P. ECKELMAN, John C. TIMMER, Peter L. NGUY, Grant B. GUENTHER, Quinn DEVERAUX
  • Publication number: 20200055946
    Abstract: Provided herein are VHH-containing polypeptides that bind OX40. In some embodiments, VHH-containing polypeptides that bind and agonize OX40 are provided. Uses of the VHH-containing polypeptides are also provided.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 20, 2020
    Applicant: Inhibrx, Inc.
    Inventors: John C. Timmer, William Crago, Kyle Jones, Katelyn Willis, Florian Sulzmaier, Bryan Becklund, Brendan P. Eckelman
  • Publication number: 20200048350
    Abstract: The invention relates generally to multispecific polypeptides that bind at least CD3, a second antigen, and a receptor of a T cell, such as a costimulatory receptor or an inhibitory receptor, in which the multispecific polypeptide constructs are able to engage CD3. In some embodiments, the multispecific polypeptide constructs bind a costimulatory receptor and provide costimulatory binding activity. In some embodiments, the multispecific polypeptide constructs bind an inhibitory receptor and block inhibitory activity. In some aspects, the multispecific polypeptides have constrained CD3 binding and bind to or engage CD3 only upon binding to the second antigen, such as a tumor associated antigen. In some embodiments, the multispecific polypeptides contain cleavable linkers that, when cleaved, result in dual effector functions. Also provided are methods of making and using these multispecific polypeptides in a variety of therapeutic, diagnostic and prophylactic indications.
    Type: Application
    Filed: July 23, 2019
    Publication date: February 13, 2020
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. ECKELMAN, Michael D. KAPLAN, Katelyn M. WILLIS, Quinn DEVERAUX, Kyle S. JONES, Rajay A. PANDIT, John C. TIMMER
  • Patent number: 10526397
    Abstract: The invention provides modifications within human or humanized single domain antibody fragments (sdAbs) that prevent recognition by pre-existing antibodies, to isolated polypeptides that include these modifications, and to methods and uses thereof.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: January 7, 2020
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Quinn Deveraux
  • Patent number: 10501551
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: December 10, 2019
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Publication number: 20190345235
    Abstract: This invention relates generally to molecules that specifically bind bacterial V-tip proteins of the type III secretion system of Gram negative bacteria such as PcrV from Pseudomonas aeruginosa. More specifically, this invention relates to molecules that block the injection of effector molecules into target cells. This invention also relates to molecules that specifically bind to bacterial lipoproteins, such as OprI. The molecules of the present invention are monospecific or multispecific and can bind their target antigen in a monovalent or multivalent manner. The invention also relates generally to molecules that specifically bind bacterial cell surface proteins such as OprI, and to methods of use these molecules in a variety of therapeutic, diagnostic, and/or prophylactic indications.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 14, 2019
    Applicant: Inhibrx, Inc.
    Inventors: Andrew Hollands, John C. Timmer, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20190330366
    Abstract: The invention relates generally to multispecific polypeptides having constrained CD3 binding. In some embodiments, components of the multispecific polypeptides are connected by a non-cleavable linker. Also provided are methods of making and using these multispecific polypeptides in a variety of therapeutic, diagnostic and prophylactic indications.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 31, 2019
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. ECKELMAN, Michael D. KAPLAN, Katelyn M. WILLIS, John C. TIMMER
  • Publication number: 20190309083
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF). More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 10, 2019
    Applicant: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Patent number: 10400029
    Abstract: This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin and second polypeptide comprising of at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; and an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: September 3, 2019
    Assignee: Inhibrx, LP
    Inventors: Brendan P. Eckelman, John C. Timmer, Quinn Deveraux
  • Publication number: 20190263916
    Abstract: This invention relates generally to molecules that specifically engage OX40, a member of the TNF receptor superfamily (TNFRSF). More specifically this invention relates to multivalent and multispecific molecules that bind at least OX40.
    Type: Application
    Filed: March 7, 2019
    Publication date: August 29, 2019
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rason, Quinn Deveraux
  • Patent number: 10344078
    Abstract: This invention relates generally to molecules that specifically bind bacterial V-tip proteins of the type III secretion system of Gram negative bacteria such as PcrV from Pseudomonas aeruginosa. More specifically, this invention relates to molecules that block the injection of effector molecules into target cells. This invention also relates to molecules that specifically bind to bacterial lipoproteins, such as OprI. The molecules of the present invention are monospecific or multispecific and can bind their target antigen in a monovalent or multivalent manner. The invention also relates generally to molecules that specifically bind bacterial cell surface proteins such as OprI, and to methods of use these molecules in a variety of therapeutic, diagnostic, and/or prophylactic indications.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: July 9, 2019
    Assignee: Inhibrx, Inc.
    Inventors: Andrew Hollands, John C. Timmer, Quinn Deveraux, Brendan P. Eckelman
  • Patent number: 10308720
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF). More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 4, 2019
    Assignee: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20190100594
    Abstract: This disclosure generally provides molecules that specifically engage glucocorticoid-induced TNFR-related protein (GITR), a member of the TNF receptor superfamily (TNFRSF). More specifically, the disclosure relates to multivalent and/or multispecific molecules that bind at least GITR.
    Type: Application
    Filed: August 31, 2018
    Publication date: April 4, 2019
    Applicant: Inhibrx, Inc.
    Inventors: John C. TIMMER, Kyle S. JONES, Amir RAZAI, Abrahim HUSSAIN, Katelyn M. WILLIS, Quinn DEVERAUX, Brendan P. ECKELMAN