Patents by Inventor Brennan C. Lieu

Brennan C. Lieu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066644
    Abstract: A method is provided for designing and producing fiber-reinforced polymer (FRP) pistons. Pistons made with FRP have a lower mass than prior art metal pistons conferring advantageous engine efficiency and stability. FRP pistons also increase the thermal efficiency of engines by having a lower thermal conductivity, with tighter piston-to-bore clearance, and/increased air-fuel ratio than pistons of metal. The technical parameters of the piston are identified, and a piston body blank is produced. The blank is then machined, a bearing surface for the pin bore is created, the piston blank is optionally coated, is optionally subjected to Heavy Metal Ion Implantation (HMII) treatment and is subjected to sodium silicate impregnation to produce the final pistons.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Applicant: AWA FORGED COMPOSITES, LLC
    Inventors: Bryan Gill, Brennan C. Lieu, Aaron Guo
  • Publication number: 20230173769
    Abstract: A method is provided of designing and producing a carbon fiber composite wrist pin using a combination of a carbon fiber composite pultruded rod that is overwrapped with a carbon fiber prepreg fabric. The use of the carbon fiber pultruded rod and the carbon fiber prepreg fabric results in a rod with optimal flexural strength properties to endure the flexural stress placed on a wrist pin during the cycling of an internal combustion engine. In addition, the overwrapping of the pultruded rod with a carbon fiber prepreg fabric allows for one pultruded rod blank to produce multiple wrist pin sizes by allowing one to change the outer diameter of the wrist pin by changing the thickness of the carbon fiber prepreg fabric overwrapping. After overwrapping, the rod blank is cut to a chosen specific length, optionally inserted into a metal sleeve, and coated with a thermal barrier coating. The wrist pin is then ground to a chosen specific tolerance and coated with an anti-friction coating.
    Type: Application
    Filed: November 10, 2022
    Publication date: June 8, 2023
    Applicant: AWA Forged Composites, LLC
    Inventors: Bryan Gill, Brennan C. Lieu
  • Patent number: 11498287
    Abstract: A method is provided of designing and producing a carbon fiber composite wrist pin using a combination of a carbon fiber composite pultruded rod that is overwrapped with a carbon fiber prepreg fabric. The use of the carbon fiber pultruded rod and the carbon fiber prepreg fabric results in a rod with optimal flexural strength properties to endure the flexural stress placed on a wrist pin during the cycling of an internal combustion engine. In addition, the overwrapping of the pultruded rod with a carbon fiber prepreg fabric allows for one pultruded rod blank to produce multiple wrist pin sizes by allowing one to change the outer diameter of the wrist pin by changing the thickness of the carbon fiber prepreg fabric overwrapping. After overwrapping, the rod blank is cut to a chosen specific length, optionally inserted into a metal sleeve, and coated with a thermal barrier coating. The wrist pin is then ground to a chosen specific tolerance and coated with an anti-friction coating.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: November 15, 2022
    Assignee: AWA Forged Composites, LLC
    Inventors: Bryan Gill, Brennan C. Lieu
  • Publication number: 20220048146
    Abstract: A method is provided for designing and producing fiber-reinforced polymer (FRP) pistons. Pistons made with FRP have a lower mass than prior art metal pistons conferring advantageous engine efficiency and stability. FRP pistons also increase the thermal efficiency of engines by having a lower thermal conductivity, with tighter piston-to-bore clearance, and/increased air-fuel ratio than pistons of metal. The technical parameters of the piston are identified, and a piston body blank is produced. The blank is then machined, a bearing surface for the pin bore is created, the piston blank is optionally coated, is optionally subjected to Heavy Metal Ion Implantation (HMII) treatment and is subjected to sodium silicate impregnation to produce the final pistons.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Applicant: AWA Forged Composites, LLC
    Inventors: Bryan Gill, Brennan C. Lieu, Aaron Guo
  • Publication number: 20220009175
    Abstract: A method is provided of designing and producing a carbon fiber composite wrist pin using a combination of a carbon fiber composite pultruded rod that is overwrapped with a carbon fiber prepreg fabric. The use of the carbon fiber pultruded rod and the carbon fiber prepreg fabric results in a rod with optimal flexural strength properties to endure the flexural stress placed on a wrist pin during the cycling of an internal combustion engine. In addition, the overwrapping of the pultruded rod with a carbon fiber prepreg fabric allows for one pultruded rod blank to produce multiple wrist pin sizes by allowing one to change the outer diameter of the wrist pin by changing the thickness of the carbon fiber prepreg fabric overwrapping. After overwrapping, the rod blank is cut to a chosen specific length, optionally inserted into a metal sleeve, and coated with a thermal barrier coating. The wrist pin is then ground to a chosen specific tolerance and coated with an anti-friction coating.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 13, 2022
    Applicant: AWA Forged Composites, LLC
    Inventors: Bryan Gill, Brennan C. Lieu