Patents by Inventor Brennan Lovelace Peterson

Brennan Lovelace Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815349
    Abstract: In one embodiment, an automatic high-speed X-ray system may generate a high-resolution X-ray image of an inspected sample at a direction substantially orthogonal to a plane of the inspected sample. The system may determine a first cross-sectional shape of a first portion of a first element of interest in the inspected sample based on grayscale values of the X-ray image associated with the first element of interest. The system may determine a second cross-sectional shape of a second portion of the first element of interest in the inspected sample. The second cross-sectional shape may be determined based on the grayscale values of the X-ray image associated with the first element of interest. The system may determine one or more first metrological parameters associated with the first element of interest in the inspected sample based a comparison of the first cross-sectional shape and the second cross-sectional shape.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: November 14, 2023
    Assignee: Bruker Nano, Inc.
    Inventors: Brennan Lovelace Peterson, Hak Chuah Sim, Andrew George Reid, Nabil Farah Dawahre Olivieri
  • Publication number: 20220042795
    Abstract: In one embodiment, an automatic high-speed X-ray system may generate a high-resolution X-ray image of an inspected sample at a direction substantially orthogonal to a plane of the inspected sample. The system may determine a first cross-sectional shape of a first portion of a first element of interest in the inspected sample based on grayscale values of the X-ray image associated with the first element of interest. The system may determine a second cross-sectional shape of a second portion of the first element of interest in the inspected sample. The second cross-sectional shape may be determined based on the grayscale values of the X-ray image associated with the first element of interest. The system may determine one or more first metrological parameters associated with the first element of interest in the inspected sample based a comparison of the first cross-sectional shape and the second cross-sectional shape.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 10, 2022
    Inventors: Brennan Lovelace Peterson, Hak Chuah Sim, Andrew George Reid, Nabil Farah Dawahre Olivieri