Patents by Inventor Brenor L. Brophy

Brenor L. Brophy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9688863
    Abstract: Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si—OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: June 27, 2017
    Assignee: Enki Technology, Inc.
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Thomas E. Colson, Peter R. Gonsalves, Ze'ev R. Abrams
  • Publication number: 20170141242
    Abstract: Disclosed herein is a method of forming a glass coating including making a sol by hydrolyzing an organosilane in the presence of a least one solvent and at least one catalyst, further adding at least one alkoxysilane, and aging the sol for at least 24 hours.
    Type: Application
    Filed: September 15, 2016
    Publication date: May 18, 2017
    Inventors: Vinod Nair, Brenor L. Brophy
  • Patent number: 9598586
    Abstract: Glass coating materials and methods are disclosed for the coating of glass substrates used in the manufacturer of photovoltaic solar modules such that the coating enhances the reliability of the module by reducing its susceptibility to potential induced degradation (PID). Coating materials are disclosed that reduce soiling on the front surface of the glass; that increase the surface resistivity of the glass and that repel moisture and that seal the surface from the ingress of moisture. Further electrically conductive coatings are disclosed that reduce the electric field between the front and back surfaces of the glass and hence reduce ion mobility within the glass and transport from the interior glass surface to the solar cell. There are additional configuration choices for fine tuning associated with separately optimizing the exterior and interior glass coating. Finally, coating processes and methods are disclosed for coating glass substrates with the disclosed materials.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: March 21, 2017
    Assignee: Enki Technology, Inc.
    Inventors: Brenor L. Brophy, Sina Maghsoodi, Kevin Kopczynski
  • Publication number: 20160289457
    Abstract: Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si—OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Thomas E. Colson, Peter R. Gonsalves, Ze'ev R. Abrams
  • Patent number: 9461185
    Abstract: Disclosed herein is a coated glass element including a glass component and a coating adhered to the glass component through siloxane linkages, the coating having at least one of an anti-reflective property, a high abrasion resistance property and a hydrophobic property, wherein the coating comprises a dried gel formed from at least one hydrolyzed alkoxysilane-based sol and at least one hydrolyzed organosilane-based sol.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 4, 2016
    Assignee: Enki Technology, Inc.
    Inventors: Vinod Nair, Brenor L. Brophy
  • Patent number: 9399720
    Abstract: Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si—OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 26, 2016
    Assignee: Enki Technology, Inc.
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Thomas E. Colson, Peter R. Gonsalves, Ze'ev R. Abrams
  • Patent number: 9376589
    Abstract: Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 28, 2016
    Assignee: Enki Technology, Inc.
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Thomas E. Colson, Peter R. Gonsalves, Ze'ev R. Abrams
  • Patent number: 9376593
    Abstract: Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 28, 2016
    Assignee: Enki Technology, Inc.
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Ze'ev R. Abrams, Peter R. Gonsalves
  • Patent number: 9353268
    Abstract: The disclosure discloses abrasion resistant, persistently hydrophobic and oleophobic, anti-reflective and anti-soiling coatings for glass. The coatings described herein have wide application, including for example the front cover glass of solar modules. Methods of applying the coatings using various apparatus are disclosed. Methods for using the coatings in solar energy generation plants to achieve greater energy yield and reduced operations costs are disclosed. Coating materials are formed by combinations of hydrolyzed silane-base precursors through sol-gel processes. Several methods of synthesis and formulation of coating materials are disclosed.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 31, 2016
    Assignee: Enki Technology, Inc.
    Inventors: Brenor L. Brophy, Vinod Nair, Bakul Champaklal Dave
  • Patent number: 9314811
    Abstract: Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: April 19, 2016
    Assignee: Enki Technology, Inc.
    Inventors: Brenor L. Brophy, Peter R. Gonsalves, Sina Maghsoodi, Thomas E. Colson, Yu S. Yang, Ze'ev R. Abrams
  • Publication number: 20160085944
    Abstract: Disclosed herein are methods for characterizing environmental factors that affect glass substrates and then based on those factors, determining the optimal coatings to be applied to glass substrates used in solar energy modules and the like to enhance efficiency, general performance and to reduce operational and maintenance costs. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes including flow coating and roll coating; coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion resistant functionalized anti-reflective coatings.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 24, 2016
    Inventors: Brenor L. Brophy, Kevin Kopczynski
  • Publication number: 20160035912
    Abstract: Disclosed herein is a coated glass element including a glass component and a coating adhered to the glass component through siloxane linkages, the coating having at least one of an anti-reflective property, a high abrasion resistance property and a hydrophobic property, wherein the coating comprises a dried gel formed from at least one hydrolyzed alkoxysilane-based sol and at least one hydrolyzed organosilane-based sol.
    Type: Application
    Filed: September 14, 2015
    Publication date: February 4, 2016
    Inventors: Vinod Nair, Brenor L. Brophy
  • Publication number: 20160032141
    Abstract: Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 4, 2016
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Thomas E. Colson, Peter R. Gonsalves, Ze'ev R. Abrams
  • Publication number: 20160032147
    Abstract: Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si—OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives.
    Type: Application
    Filed: July 14, 2015
    Publication date: February 4, 2016
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Thomas E. Colson, Peter R. Gonsalves, Ze'ev R. Abrams
  • Publication number: 20160013329
    Abstract: Glass coating materials and methods are disclosed for the coating of glass substrates used in the manufacturer of photovoltaic solar modules such that the coating enhances the reliability of the module by reducing its susceptibility to potential induced degradation (PID). Coating materials are disclosed that reduce soiling on the front surface of the glass; that increase the surface resistivity of the glass and that repel moisture and that seal the surface from the ingress of moisture. Further electrically conductive coatings are disclosed that reduce the electric field between the front and back surfaces of the glass and hence reduce ion mobility within the glass and transport from the interior glass surface to the solar cell. There are additional configuration choices for fine tuning associated with separately optimizing the exterior and interior glass coating. Finally, coating processes and methods are disclosed for coating glass substrates with the disclosed materials.
    Type: Application
    Filed: July 14, 2015
    Publication date: January 14, 2016
    Inventors: Brenor L. Brophy, Sina Maghsoodi, Kevin Kopczynski
  • Publication number: 20160002498
    Abstract: Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Inventors: Sina Maghsoodi, Brenor L. Brophy, Ze'ev R. Abrams, Peter R. Gonsalves
  • Publication number: 20150099060
    Abstract: Disclosed herein is a method of coating and curing, including conveying a substantially flat substrate to be coated with a conveyor system through a combination roll coating and curing facility, wherein the combination roll coating and curing facility comprises at least one roll coating facility and at least one curing facility, roll coating the substantially flat substrate with a continuous sol gel coating material with the at least one roll coating facility, and curing the sol gel coating material on the substantially flat substrate with an air knife of the at least one curing facility, wherein the air knife is adapted to direct a heated stream of air to cure the continuous sol gel coating material while an interior of the substantially flat substrate remains at a temperature substantially lower than a temperature of air from the air knife.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 9, 2015
    Inventors: Brenor L. Brophy, Peter R. Gonsalves, Yu S. Yang, Patrick J. Neyman
  • Patent number: 8960123
    Abstract: Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 24, 2015
    Assignee: Enki Technology, Inc.
    Inventors: Brenor L. Brophy, Sina Maghsoodi, Patrick J. Neyman, Peter R. Gonsalves, Jeffrey G. Hirsch, Yu S. Yang
  • Publication number: 20150037570
    Abstract: The disclosure discloses abrasion resistant, persistently hydrophobic and oleophobic, anti-reflective and anti-soiling coatings for glass. The coatings described herein have wide application, including for example the front cover glass of solar modules. Methods of applying the coatings using various apparatus are disclosed. Methods for using the coatings in solar energy generation plants to achieve greater energy yield and reduced operations costs are disclosed. Coating materials are formed by combinations of hydrolyzed silane-base precursors through sol-gel processes. Several methods of synthesis and formulation of coating materials are disclosed.
    Type: Application
    Filed: September 17, 2014
    Publication date: February 5, 2015
    Inventors: Brenor L. Brophy, Vinod Nair, Bakul Champaklal Dave
  • Publication number: 20140261615
    Abstract: Functionalized coatings preferentially coated on the tin-side of float glass used in solar and other applications are disclosed. Coating compositions include silane-based precursors that are used to form coatings through a sol-gel process including hydrolyzed alkoxysilane-based sols. The coatings are characterized by anti-reflective, abrasion resistant, and anti-soiling properties and the tunability of those properties with respect to different applications. The coatings formed from the compositions described herein have wide application, including, for example, use as abrasion resistant coatings on the outer glass of solar modules, wherein the coating adheres through siloxane linkages. In some embodiments, when applied to glass and cured at a temperature of less than 300° C., the dried sol gel has abrasion resistance sufficient to pass standard EN-1096-2 with a loss of transmission of no more than 0.5% and enables a post-test light transmission gain of greater than 1% as compared to uncoated glass.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Enki Technology, Inc.
    Inventors: Vinod Nair, Brenor L. Brophy