Patents by Inventor Brent A. Buchine

Brent A. Buchine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150367072
    Abstract: A portable auto-injector configured to store a liquid component in a first chamber separately from a dry medication in a second chamber, wherein a first actuation mechanism opens a valve allowing for the initiation of a mixing step prior to injection. An extendable needle guard is provided over the delivery assembly which prevents premature injection as well as inadvertent sticks or other cross contamination of a needle. The needle guard can also form part of a secondary trigger mechanism which injects the mixed components after the mixing stage is complete.
    Type: Application
    Filed: August 18, 2015
    Publication date: December 24, 2015
    Applicant: Windgap Medical, LLC
    Inventors: Cole Constantineau, Christopher J. Stepanian, Adam R. Standley, Michel Bruehwiler, Brent Buchine, Jeffrey Thomas Chagnon, Robert Brik
  • Publication number: 20150367073
    Abstract: A portable auto-injector configured to store a dry medication separately from a liquid component, wherein removal of a cap operates a first actuation mechanism which opens a valve between a first and second chamber that are slidably movable relative to each other and thus allows for the initiation of a mixing step prior to injection. An extendable needle guard is provided over the delivery assembly which prevents premature injection as well as inadvertent sticks or other cross contamination of a needle. The needle guard can also form part of a secondary trigger mechanism which injects the mixed components after the mixing stage is complete.
    Type: Application
    Filed: August 18, 2015
    Publication date: December 24, 2015
    Applicant: WINDGAP MEDICAL, LLC
    Inventors: Adam R. Standley, Christopher J. Stepanian, Brent Buchine, Michel Bruehwiler, Cole Constantineau, Jeffrey Thomas Chagnon, Robert Brik
  • Patent number: 9202868
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: December 1, 2015
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Brent Buchine, Marcie R. Black, Faris Modawar
  • Publication number: 20150231334
    Abstract: The present disclosure provides methods of preparing a medical solution. In some aspects, the medical solution can be prepared from mixing a first liquid with a second liquid or mixing a solid component with a liquid in an autoinjector. In some aspects, the heat released from the mixing can promote solubility of a dry medicament in the solution.
    Type: Application
    Filed: December 18, 2014
    Publication date: August 20, 2015
    Inventors: Brent A. Buchine, Adam R. Standley, Christopher J. Stepanian
  • Publication number: 20150174336
    Abstract: A portable auto-injector is capable of moving from a compact state where the auto-injector is in a shape easier to transport than in an activation state wherein the auto-injector has been extended. A safety limits movement of the needle assembly and prevents premature needle sticks. The drug is stored in one or more dry and wet medicament states until need.
    Type: Application
    Filed: April 17, 2014
    Publication date: June 25, 2015
    Applicant: Windgap Medical, Inc.
    Inventors: Brent Buchine, Adam Standley, Christopher Stepanian
  • Patent number: 8945794
    Abstract: A process is provided for etching a silicon-containing substrate. In the process, the surface of the substrate is cleaned. A film of alumina is deposited on the cleaned substrate surface. A silver film is deposited above the film of alumina. An etchant comprising HF is contacted with the silver film.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: February 3, 2015
    Inventors: Faris Modawar, Jeff Miller, Mike Jura, Brian Murphy, Marcie Black, Brent A. Buchine
  • Publication number: 20140335412
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Applicant: BANDGAP ENGINEERING, INC.
    Inventors: Brent Buchine, Marcie R. Black, Faris Modawar
  • Publication number: 20140252564
    Abstract: A process for etching a silicon-containing substrate to form structures is provided. In the process, a metal is deposited and patterned onto a silicon-containing substrate (commonly one with a resistivity above 1-10 ohm-cm) in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. The metallized substrate is submerged into an etchant aqueous solution comprising about 4 to about 49 weight percent HF and an oxidizing agent such as about 0.5 to about 30 weight percent H2O2, thus producing a metallized substrate with one or more trenches. A second silicon etch is optionally employed to remove nanowires inside the one or more trenches.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: BANDGAP ENGINEERING, INC.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Patent number: 8791449
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 29, 2014
    Assignee: Bandgap Engineering, Inc.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Patent number: 8734659
    Abstract: A process for etching a silicon-containing substrate to form structures is provided. In the process, a metal is deposited and patterned onto a silicon-containing substrate (commonly one with a resistivity above 1-10 ohm-cm) in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. The metallized substrate is submerged into an etchant aqueous solution comprising about 4 to about 49 weight percent HF and an oxidizing agent such as about 0.5 to about 30 weight percent H2O2, thus producing a metallized substrate with one or more trenches. A second silicon etch is optionally employed to remove nanowires inside the one or more trenches.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 27, 2014
    Assignee: Bandgap Engineering Inc.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Publication number: 20130247966
    Abstract: A photovoltaic device is provided. It comprises at least two electrical contacts, p type dopants and n type dopants. It also comprises a bulk region and nanowires in an aligned array which contact the bulk region. All nanowires in the array have one predominant type of dopant, n or p, and at least a portion of the bulk region also comprises that predominant type of dopant. The portion of the bulk region comprising the predominant type of dopant typically contacts the nanowire array. The photovoltaic devices' p-n junction would then be found in the bulk region. The photovoltaic devices would commonly comprise silicon.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 26, 2013
    Applicant: Bandgap Engineering, Inc.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Patent number: 8450599
    Abstract: A photovoltaic device is provided. It comprises at least two electrical contacts, p type dopants and n type dopants. It also comprises a bulk region and nanowires in an aligned array which contact the bulk region. All nanowires in the array have one predominant type of dopant, n or p, and at least a portion of the bulk region also comprises that predominant type of dopant. The portion of the bulk region comprising the predominant type of dopant typically contacts the nanowire array. The photovoltaic devices' p-n junction would then be found in the bulk region. The photovoltaic devices would commonly comprise silicon.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 28, 2013
    Assignee: Bandgap Engineering, Inc.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Patent number: 8416485
    Abstract: A nanostructured optoelectronic device is provided which comprises a nanostructured material and a host material intermingled with the nanostructured material. The host material may have a higher index of refraction than the nanostructured material. The host material's index of refraction may be chosen to maximize the effective active area of the device. In an alternative embodiment, the host material comprises scattering centers or absorption/luminescence centers which absorb light and reemit the light at a different energy or both.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: April 9, 2013
    Assignee: Bandgap Engineering, Inc.
    Inventors: Marcie R. Black, Brent A. Buchine
  • Publication number: 20120301785
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: BANDGAP ENGINEERING INC.
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Publication number: 20120156585
    Abstract: A process is provided for etching a silicon-containing substrate. In the process, the surface of the substrate is cleaned. A film of alumina is deposited on the cleaned substrate surface. A silver film is deposited above the film of alumina. An etchant comprising HF is contacted with the silver film.
    Type: Application
    Filed: November 14, 2011
    Publication date: June 21, 2012
    Inventors: Faris Modawar, Jeff Miller, Mike Jura, Brian Murphy, Marcie Black, Brent A. Buchine
  • Patent number: 8143143
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: March 27, 2012
    Inventors: Brent A. Buchine, Faris Modawar, Marcie R. Black
  • Publication number: 20110232756
    Abstract: A nanostructured optoelectronic device is provided which comprises a nanostructured material and a host material intermingled with the nanostructured material. The host material may have a higher index of refraction than the nanostructured material. The host material's index of refraction may be chosen to maximize the effective active area of the device. In an alternative embodiment, the host material comprises scattering centers or absorption/luminescence centers which absorb light and reemit the light at a different energy or both.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Applicant: BANDGAP ENGINEERING, INC.
    Inventors: Marcie R. Black, Brent A. Buchine
  • Patent number: 7975363
    Abstract: A probe includes a substrate and a tetragonal structure disposed on the substrate that has four end points. Three of the end points are disposed adjacent to the substrate. A fourth of the end points extends outwardly and substantially normal to the substrate. In a method of making a probe tip, a plurality of tetrapods are grown and at least one of the tetrapods is placed on a substrate at a selected location. The tetrapod is affixed to the substrate at the selected location.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: July 12, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, William L. Hughes, Brent A. Buchine
  • Patent number: 7973995
    Abstract: A nanostructured optoelectronic device is provided which comprises a nanostructured material and a host material intermingled with the nanostructured material. The host material may have a higher index of refraction than the nanostructured material. The host material's index of refraction may be chosen to maximize the effective active area of the device. In an alternative embodiment, the host material comprises scattering centers or absorption/luminescence centers which absorb light and reemit the light at a different energy or both.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: July 5, 2011
    Assignee: Bandgap Engineering Inc.
    Inventors: Marcie R. Black, Brent A. Buchine
  • Publication number: 20110024169
    Abstract: In an aspect of the invention, a process to make a nanowire array is provided. In the process, silicon is deposited onto a conductive substrate comprising an organic material and optionally a conductive layer, thus forming a silicon-containing layer. Nanoparticles are deposited on top of the silicon-containing layer. Metal is deposited on top of the nanoparticles and silicon in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. The metallized substrate is contacted with an etchant aqueous solution comprising about 2 to about 49 weight percent HF and an oxidizing agent.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 3, 2011
    Inventors: Brent A. Buchine, Jeff Miller, Marcie R. Black, Faris Modawar