Patents by Inventor Brent A. Wacaser

Brent A. Wacaser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742632
    Abstract: A laser structure including a Si or Ge substrate, a III-V buffer layer formed on the substrate, a light emitting diode (LED) formed on the buffer layer configured to produce visible light, a lens disposed on the LED to focus light from the LED, a photonic crystal layer formed on the LED to receive the light focused by the lens, and a monolayer semiconductor nanocavity laser formed on the photonic crystal layer for receiving light through the photonic crystal layer from the LED. The LED and the laser are formed monolithically and the LED acts as an optical pump for the laser.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: August 29, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana, Brent A. Wacaser
  • Publication number: 20230122482
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate an epitaxial Josephson junction transmon device are provided. According to an embodiment, a device can comprise a substrate. The device can further comprise an epitaxial Josephson junction transmon device coupled to the substrate. According to an embodiment, a device can comprise an epitaxial Josephson junction transmon device coupled to a substrate. The device can further comprise a tuning gate coupled to the substrate and formed across the epitaxial Josephson junction transmon device. According to an embodiment, a device can comprise a first superconducting region and a second superconducting region formed on a substrate. The device can further comprise an epitaxial Josephson junction tunneling channel coupled to the first superconducting region and the second superconducting region.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 20, 2023
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Patent number: 11563162
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate an epitaxial Josephson junction transmon device are provided. According to an embodiment, a device can comprise a substrate. The device can further comprise an epitaxial Josephson junction transmon device coupled to the substrate. According to an embodiment, a device can comprise an epitaxial Josephson junction transmon device coupled to a substrate. The device can further comprise a tuning gate coupled to the substrate and formed across the epitaxial Josephson junction transmon device. According to an embodiment, a device can comprise a first superconducting region and a second superconducting region formed on a substrate. The device can further comprise an epitaxial Josephson junction tunneling channel coupled to the first superconducting region and the second superconducting region.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: January 24, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Patent number: 11411160
    Abstract: Techniques regarding qubit devices comprising silicon-based Josephson junctions and/or the manufacturing of qubit devices comprising silicon-based Josephson junctions are provided. For example, one or more embodiments described herein can comprise an apparatus that can include a Josephson junction comprising a tunnel barrier positioned between two vertically stacked superconducting silicon electrodes.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: August 9, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Publication number: 20220181535
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate an epitaxial Josephson junction transmon device are provided. According to an embodiment, a device can comprise a substrate. The device can further comprise an epitaxial Josephson junction transmon device coupled to the substrate. According to an embodiment, a device can comprise an epitaxial Josephson junction transmon device coupled to a substrate. The device can further comprise a tuning gate coupled to the substrate and formed across the epitaxial Josephson junction transmon device. According to an embodiment, a device can comprise a first superconducting region and a second superconducting region formed on a substrate. The device can further comprise an epitaxial Josephson junction tunneling channel coupled to the first superconducting region and the second superconducting region.
    Type: Application
    Filed: January 9, 2020
    Publication date: June 9, 2022
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Patent number: 11349061
    Abstract: According to an embodiment of the present invention, a method of producing a computing device includes providing a semiconductor substrate, and patterning a mask on the semiconductor substrate, the mask exposing a first portion of the semiconductor substrate and covering a second portion of the semiconductor substrate. The method includes implanting the first portion of the semiconductor substrate with a dopant. The method includes annealing the first portion of the semiconductor substrate to form an annealed doped region, while maintaining the second portion of the semiconductor substrate as an unannealed portion.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: May 31, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Brooks Farmer
  • Publication number: 20210384405
    Abstract: According to an embodiment of the present invention, a method of producing a computing device includes providing a semiconductor substrate, and patterning a mask on the semiconductor substrate, the mask exposing a first portion of the semiconductor substrate and covering a second portion of the semiconductor substrate. The method includes implanting the first portion of the semiconductor substrate with a dopant. The method includes annealing the first portion of the semiconductor substrate to form an annealed doped region, while maintaining the second portion of the semiconductor substrate as an unannealed portion.
    Type: Application
    Filed: June 8, 2020
    Publication date: December 9, 2021
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Brooks Farmer
  • Publication number: 20210226114
    Abstract: Techniques regarding qubit devices comprising silicon-based Josephson junctions and/or the manufacturing of qubit devices comprising silicon-based Josephson junctions are provided. For example, one or more embodiments described herein can comprise an apparatus that can include a Josephson junction comprising a tunnel barrier positioned between two vertically stacked superconducting silicon electrodes.
    Type: Application
    Filed: January 21, 2020
    Publication date: July 22, 2021
    Inventors: Steven J. Holmes, Devendra K. Sadana, Brent A. Wacaser, Damon Farmer
  • Patent number: 11003942
    Abstract: A method for crystal analysis includes identifying a crystalline region on a device where an electronic channeling pattern is needed to be determined, acquiring a whole image for each of a plurality of different positions for the crystalline region using a scanning electron microscope (SEM) as the crystalline region is moved to different positions. Relevant regions are extracted from the whole images. The images of the relevant regions are stitched together to form a composite map of a full electron channeling pattern representative of the crystalline region wherein the electronic channeling pattern is provided due to an increase in effective angular range between a SEM beam and a surface of the crystal region.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Kunal Mukherjee, John A. Ott, Devendra K. Sadana, Brent A. Wacaser
  • Patent number: 10777665
    Abstract: Aspects of the present disclosure include a semiconductor structure comprising a gate layer with an associated gate dielectric thereon, and a region comprising at least one fin structure in contact with the gate layer, wherein the fin structure includes at least two distinct materials, and wherein one of the two distinct materials is a Zn based material.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: September 15, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yun Seog Lee, Devendra Sadana, Joel P. De Souza, Brent A. Wacaser
  • Patent number: 10763340
    Abstract: In one example, a method for fabricating a semiconductor device includes forming a mandrel comprising silicon. Sidewalls of the silicon are orientated normal to the <111> direction of the silicon. A nanowire is grown directly on at least one of the sidewalls of the silicon and is formed from a material selected from Groups III-V. Only one end of the nanowire directly contacts the silicon.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: September 1, 2020
    Assignee: International Business Machines Corporation
    Inventors: Sanghoon Lee, Effendi Leobandung, Renee Mo, Brent A. Wacaser
  • Patent number: 10755925
    Abstract: A method for reducing crystalline defects in a semiconductor structure is presented. The method includes epitaxially growing a first crystalline material over a crystalline substrate, epitaxially growing a second crystalline material over the first crystalline material, and patterning and removing portions of the second crystalline material to form openings. The method further includes converting the first crystalline material into a non-crystalline material, depositing a thermally stable material in the openings, depositing a capping layer over the second crystalline material and the thermally stable material to form a substantially enclosed semiconductor structure, and annealing the substantially enclosed semiconductor structure.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Kunal Mukherjee, John A. Ott, Devendra K. Sadana, Brent A. Wacaser
  • Patent number: 10714303
    Abstract: Techniques for high throughput electron channeling contrast imaging (ECCI) by varying electron beam energy are provided. In one aspect, a method for ECCI of a crystalline wafer includes: placing the crystalline wafer under an electron microscope having an angle of less than 90° relative to a surface of the crystalline wafer; generating an electron beam, by the electron microscope, incident on the crystalline wafer; varying an accelerating voltage of the electron microscope to access a channeling condition of the crystalline wafer; and obtaining an image of the crystalline wafer. A system for ECCI is also provided.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: July 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Wacaser, Devendra K. Sadana, Stephen W. Bedell
  • Patent number: 10615178
    Abstract: In one example, a method for fabricating a semiconductor device includes etching a layer of silicon to form a plurality of fins and growing layers of a semiconductor material directly on sidewalls of the plurality of fins, wherein the semiconductor material and surfaces of the sidewalls have different crystalline properties.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Sanghoon Lee, Effendi Leobandung, Brent A. Wacaser
  • Publication number: 20200027690
    Abstract: Techniques for high throughput electron channeling contrast imaging (ECCI) by varying electron beam energy are provided. In one aspect, a method for ECCI of a crystalline wafer includes: placing the crystalline wafer under an electron microscope having an angle of less than 90° relative to a surface of the crystalline wafer; generating an electron beam, by the electron microscope, incident on the crystalline wafer; varying an accelerating voltage of the electron microscope to access a channeling condition of the crystalline wafer; and obtaining an image of the crystalline wafer. A system for ECCI is also provided.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 23, 2020
    Inventors: Brent A. Wacaser, Devendra K. Sadana, Stephen W. Bedell
  • Publication number: 20190371921
    Abstract: Aspects of the present disclosure include a semiconductor structure comprising a gate layer with an associated gate dielectric thereon, and a region comprising at least one fin structure in contact with the gate layer, wherein the fin structure includes at least two distinct materials, and wherein one of the two distinct materials is a Zn based material.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Yun Seog LEE, Devendra SADANA, Joel P. DE SOUZA, Brent A. WACASER
  • Publication number: 20190363514
    Abstract: A method for forming a pumped laser structure includes forming a III-V buffer layer on a substrate including one of Si or Ge; forming a light emitting diode (LED) on the buffer layer configured to produce a threshold pump power; forming a photonic crystal layer on the LED and depositing a monolayer semiconductor nanocavity laser on the photonic crystal layer for receiving light through the photonic crystal layer from the LED with an optical pump power greater than the threshold pump power, wherein the LED and the laser are formed monolithically and the LED functions as an optical pump for the laser.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 28, 2019
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana, Brent A. Wacaser
  • Publication number: 20190363513
    Abstract: A laser structure including a Si or Ge substrate, a III-V buffer layer formed on the substrate, a light emitting diode (LED) formed on the buffer layer configured to produce visible light, a lens disposed on the LED to focus light from the LED, a photonic crystal layer formed on the LED to receive the light focused by the lens, and a monolayer semiconductor nanocavity laser formed on the photonic crystal layer for receiving light through the photonic crystal layer from the LED. The LED and the laser are formed monolithically and the LED acts as an optical pump for the laser.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 28, 2019
    Inventors: Jeehwan Kim, Ning Li, Devendra K. Sadana, Brent A. Wacaser
  • Publication number: 20190341250
    Abstract: A method for reducing crystalline defects in a semiconductor structure is presented. The method includes epitaxially growing a first crystalline material over a crystalline substrate, epitaxially growing a second crystalline material over the first crystalline material, and patterning and removing portions of the second crystalline material to form openings. The method further includes converting the first crystalline material into a non-crystalline material, depositing a thermally stable material in the openings, depositing a capping layer over the second crystalline material and the thermally stable material to form a substantially enclosed semiconductor structure, and annealing the substantially enclosed semiconductor structure.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Kunal Mukherjee, John A. Ott, Devendra K. Sadana, Brent A. Wacaser
  • Patent number: 10460937
    Abstract: A method for reducing crystalline defects in a semiconductor structure is presented. The method includes epitaxially growing a first crystalline material over a crystalline substrate, epitaxially growing a second crystalline material over the first crystalline material, and patterning and removing portions of the second crystalline material to form openings. The method further includes converting the first crystalline material into a non-crystalline material, depositing a thermally stable material in the openings, depositing a capping layer over the second crystalline material and the thermally stable material to form a substantially enclosed semiconductor structure, and annealing the substantially enclosed semiconductor structure.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: October 29, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Cheng-Wei Cheng, Kunal Mukherjee, John A. Ott, Devendra K. Sadana, Brent A. Wacaser