Patents by Inventor Brent E. Wood

Brent E. Wood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140141493
    Abstract: Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 22, 2014
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Lonnie O' Neal Ingram, Lorraine P. Yomano, Sean W. York, Brent E. Wood
  • Patent number: 8652817
    Abstract: Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 18, 2014
    Assignee: Univeristy of Florida Research Foundation, Inc.
    Inventors: Brent E. Wood, Lonnie O. Ingram, Lorraine P. Yomano, Sean W. York
  • Publication number: 20100196978
    Abstract: Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium.
    Type: Application
    Filed: June 30, 2006
    Publication date: August 5, 2010
    Applicant: The University of Florida Research Foundation, Inc
    Inventors: Brent E. Wood, Lonnie O. Ingram, Lorraine P. Yomano, Sean W. York
  • Patent number: 7192772
    Abstract: Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: March 20, 2007
    Assignee: The University of Florida Research Foundations, Inc.
    Inventors: Lonnie O. Ingram, Kazuyoshi Ohta, Brent E. Wood
  • Publication number: 20030054500
    Abstract: This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by ⅓ to ½. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.
    Type: Application
    Filed: December 21, 2001
    Publication date: March 20, 2003
    Applicant: The University of Florida Research Foundation
    Inventors: Lonnie O. Ingram, Brent E. Wood
  • Patent number: 6333181
    Abstract: This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by ⅓ to ½. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: December 25, 2001
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Lonnie O. Ingram, Brent E. Wood
  • Patent number: 6107093
    Abstract: Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: August 22, 2000
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Lonnie O. Ingram, Kazuyoshi Ohta, Brent E. Wood
  • Patent number: 5821093
    Abstract: Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: October 13, 1998
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Lonnie O. Ingram, Kazuyoshi Ohta, Brent E. Wood
  • Patent number: 5424202
    Abstract: Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above.
    Type: Grant
    Filed: March 6, 1992
    Date of Patent: June 13, 1995
    Assignee: The University of Florida
    Inventors: Lonnie O. Ingram, David S. Beall, Gerhard F. H. Burchhardt, Walter V. Guimaraes, Kazuyoshi Ohta, Brent E. Wood, Keelnatham T. Shanmugam