Patents by Inventor Brent J. Bollman

Brent J. Bollman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111169
    Abstract: A head-mounted display may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. The optical system may include a quarter wave plate that is coated to the first lens element without an intervening adhesive layer. The optical system may further include a reflective polarizer and a linear polarizer. The linear polarizer may be formed as a coating directly on the reflective polarizer (without an intervening adhesive). A single circular reflective polarizer may be used instead of a quarter wave plate and a reflective polarizer. The circular reflective polarizer may be coated to the first lens element without an intervening adhesive layer. The circular reflective polarizer may optionally provide optical power to the lens module. The circular reflective polarizer may include a cholesteric liquid crystal layer.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 4, 2024
    Inventors: Ran He, Francois R. Jacob, Zachary A. Granger, Brent J. Bollman
  • Publication number: 20230382085
    Abstract: An electronic device may have optical components that each have first and second transparent layers such as first and second glass layers. The glass layers may have outer surfaces that face away from each other and inner surfaces that face towards each other. A polymer layer is formed between the inner surfaces of the glass layers. Along the periphery of each optical component, a hermetic seal is formed to protect the polymer material of the polymer layer. The seal may have a moisture barrier layer that is attached to the first and second glass layers. The moisture barrier layer may be supported by an elastomeric buffer member. The moisture barrier layer may be formed from metal film or a polymer layer or other substrate that is coated with a moisture-impermeable coating. The moisture-impermeable coating may be formed from one or more thin-film metal layers and/or one more thin-film dielectric layers.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Zachary M Beiley, Brent J Bollman, Derrick T Carpenter, Benjamin P Cherniawski, Boyi Fu, Nathan K Gupta, Wei Lin, Graham C Nelson, Isik I Nugay Ozel, Zhipeng Pan, Alexander D Schlaupitz, Kristina M Serratto, Ying-Da Wang, Da Yu, Tyler A Marshall
  • Publication number: 20230333359
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective minor may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Publication number: 20230333390
    Abstract: A head-mounted display may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. In one example, the optical system includes a single lens element and a retarder that is coated on a curved surface of the lens element. The retarder may be coated on an aspheric concave surface of the lens element. In another example the retarder may be coated on an aspheric convex surface of the lens element. One or more components of the optical system may be formed using a direct printing technique. This may allow for one or more adhesive layers and one or more hard coatings to be omitted from the optical system. A lens element may be directly printed on the display system to improve alignment between the optical system and the display system.
    Type: Application
    Filed: June 9, 2023
    Publication date: October 19, 2023
    Inventors: Ran He, Zuoqian Wang, Brent J. Bollman, Francois R. Jacob, Guanjun Tan, John N. Border, Serhan O. Isikman, Wei-Liang Hsu, Di Liu
  • Patent number: 11740446
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Patent number: 11719936
    Abstract: A head-mounted display may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. In one example, the optical system includes a single lens element and a retarder that is coated on a curved surface of the lens element. The retarder may be coated on an aspheric concave surface of the lens element. In another example the retarder may be coated on an aspheric convex surface of the lens element. One or more components of the optical system may be formed using a direct printing technique. This may allow for one or more adhesive layers and one or more hard coatings to be omitted from the optical system. A lens element may be directly printed on the display system to improve alignment between the optical system and the display system.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: August 8, 2023
    Assignee: Apple Inc.
    Inventors: Ran He, Zuoqian Wang, Brent J. Bollman, Francois R. Jacob, Guanjun Tan, John N. Border, Serhan O. Isikman, Wei-Liang Hsu, Di Liu
  • Publication number: 20230178526
    Abstract: Display structures and methods of manufacture of display structure including a display panel with a curved three-dimensional film contour are described. In an embodiment, a display panel includes display area with a main body area and a plurality of petals extending from the main body area. The petals are folded into a curved three-dimensional (3D) film contour, and are separated by corresponding trenches between petals. The trenches may be filled with various seam hiding materials to visually obscure the trenches.
    Type: Application
    Filed: May 3, 2021
    Publication date: June 8, 2023
    Inventors: Xia Li, Tore Nauta, Gilbert Huppert, Dongwoo Shin, Hjalmar Edzer Ayco Huitema, Ruize Xu, Wei Lin, Nathan K. Gupta, Kian Kerman, Elmar Gehlen, Jin Yan, Se Hyun Ahn, Young Cheol Yang, Arnoldus Alvin Barlian, Ran He, Francois R. Jacob, Brent J. Bollman, Wei-Liang Hsu, Di Liu, Jonathan P. Mar
  • Publication number: 20210294105
    Abstract: A head-mounted display may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. In one example, the optical system includes a single lens element and a retarder that is coated on a curved surface of the lens element. The retarder may be coated on an aspheric concave surface of the lens element. In another example the retarder may be coated on an aspheric convex surface of the lens element. One or more components of the optical system may be formed using a direct printing technique. This may allow for one or more adhesive layers and one or more hard coatings to be omitted from the optical system. A lens element may be directly printed on the display system to improve alignment between the optical system and the display system.
    Type: Application
    Filed: January 29, 2021
    Publication date: September 23, 2021
    Inventors: Ran He, Zuoqian Wang, Brent J. Bollman, Francois R. Jacob, Guanjun Tan, John N. Border, Serhan O. Isikman, Wei-Liang Hsu, Di Liu
  • Publication number: 20210132349
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Patent number: 10928613
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: February 23, 2021
    Assignee: Apple Inc.
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Publication number: 20200166738
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Patent number: 10591707
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: March 17, 2020
    Assignee: Apple Inc.
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Publication number: 20190146198
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 16, 2019
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Patent number: 10203489
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: February 12, 2019
    Assignee: Apple Inc.
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Publication number: 20180039052
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.
    Type: Application
    Filed: February 16, 2017
    Publication date: February 8, 2018
    Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
  • Publication number: 20120237816
    Abstract: A bipolar battery may include a substrate having a matrix made of a thermoset polymer formed from a liquid precursor. One or more conductive pellets can be disposed in the matrix to provide electrical connection between opposite sides of the matrix. Each conductive pellet has a characteristic thickness that is greater than a thickness of the matrix. Each of the one or more conductive pellets protrudes beyond first and second surfaces of the matrix.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: YottaQ, Inc.
    Inventors: Martin R. Roscheisen, Brent J. Bollman, Hak Fei Poon, Zhengyu Wu, Boris Monahov, Sam Kao
  • Publication number: 20120104324
    Abstract: A precursor material for forming a film of a group IB-IIIA-chalcogenide compound and a method of making this film are disclosed. The film contains group IB-chalcogenide nanoparticles and/or group IIIA-chalcogenide nanoparticles and/or nanoglobules and/or nanodroplets and a source of extra chalcogen. Alternatively, the film may contain core-shell nanoparticles having core nanoparticles include group IB and/or IIIA elements, which are coated with a shell of elemental chalcogen material. The method of making a film of group IB-IIIA- chalcogenide compound includes mixing the nanoparticles and/or nanoglobules and/or nanodroplets to form an ink, depositing the ink on a substrate, heating to melt the extra chalcogen and to react the chalcogen with the group IB and group IIIA elements and/or chalcogenides to form a dense film.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 3, 2012
    Inventors: Jeroen K. J. Van Duren, Brent J. Bollman, Martin Roscheisen, Brian Sager
  • Patent number: 8048477
    Abstract: A precursor material for forming a film of a group IB-IIIA-chalcogenide compound and a method of making this film are disclosed. The film contains group IB-chalcogenide nanoparticles and/or group IIIA-chalcogenide nanoparticles and/or nanoglobules and/or nanodroplets and a source of extra chalcogen. Alternatively, the film may contain core-shell nanoparticles having core nanoparticles include group IB and/or IIIA elements, which are coated with a shell of elemental chalcogen material. The method of making a film of group IB-IIIA-chalcogenide compound includes mixing the nanoparticles and/or nanoglobules and/or nanodroplets to form an ink, depositing the ink on a substrate, heating to melt the extra chalcogen and to react the chalcogen with the group IB and group IIIA elements and/or chalcogenides to form a dense film.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: November 1, 2011
    Assignee: Nanosolar, Inc.
    Inventors: Jeroen K. J. Van Duren, Brent J. Bollman, Martin Roscheisen, Brian Sager
  • Patent number: 7829143
    Abstract: Organic films can be annealed by exposure to a solvent vapor. The solvent vapor annealing renders the organic film insoluble even in a solvent of a solution from which it was deposited. This enables deposition of two or more organic films in sequence without having one deposition alter an underlying organic film. Devices can be easily fabricated with organic films annealed in this manner when no other solution processing method is possible.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: November 9, 2010
    Assignee: Nanosolar, Inc.
    Inventors: Brent J. Bollman, Matthew R. Robinson
  • Patent number: 6987071
    Abstract: Spaces in a nanostructure can be filled with an organic material while in the solid state below Tm (without heating) by exposing the organic material to solvent vapor while on or mixed with the nanostructured material. The exposure to solvent vapor results in intimate contact between the organic material and the nanostructured material without having to expose them to possibly detrimental heat to melt in the organic material. Solution processing methods need only to be employed to create bulk films while organic material infiltration can take place in the solid state after depositing the film.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: January 17, 2006
    Assignee: Nanosolar, Inc.
    Inventors: Brent J. Bollman, Klaus Petritsch, Matthew R. Robinson