Patents by Inventor Brent M. Segal

Brent M. Segal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100134141
    Abstract: Field programmable device (FPD) chips with large logic capacity and field programmability that are in-circuit programmable are described. FPDs use small versatile nonvolatile nanotube switches that enable efficient architectures for dense low power and high performance chip implementations and are compatible with low cost CMOS technologies and simple to integrate.
    Type: Application
    Filed: August 6, 2009
    Publication date: June 3, 2010
    Applicant: NANTERO, INC.
    Inventors: Claude L. BERTIN, Brent M. SEGAL
  • Patent number: 7719067
    Abstract: Electro-mechanical switches and memory cells using vertically-oriented nanofabric articles and methods of making the same. Under one aspect, a nanotube device includes a substantially horizontal substrate having a vertically oriented feature; and a nanotube film substantially conforming to a horizontal feature of the substrate and also to at least the vertically oriented feature. Under another aspect, an electromechanical device includes a structure having a major horizontal surface and a channel formed therein, the channel having first and second wall electrodes defining at least a portion of first and second vertical walls of the channel; first and second nanotube articles vertically suspended in the channel and in spaced relation to a corresponding first and second wall electrode, and electromechanically deflectable in a horizontal direction toward or away from the corresponding first and second wall electrode in response to electrical stimulation.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 18, 2010
    Assignee: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7710157
    Abstract: Boolean logic circuits comprising nanotube-based switching elements with multiple controls. The Boolean logic circuits include input and output terminals and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. Each switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel along the nanotube channel element. At least one nanotube switching element non-volatilely retains an informational state and at least one nanotube switching elements volatilely retains an informational state. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: May 4, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7709880
    Abstract: Field effect devices having a gate controlled via a nanotube switching element. Under one embodiment, a non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and each in electrical communication with a respective terminal. A channel region of a second semiconductor type of material is disposed between the source and drain region. A gate structure is disposed over an insulator over the channel region and has a corresponding terminal. A nanotube switching element is responsive to a first control terminal and a second control terminal and is electrically positioned in series between the gate structure and the terminal corresponding to the gate structure. The nanotube switching element is electromechanically operable to one of an open and closed state to thereby open or close an electrical communication path between the gate structure and its corresponding terminal.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: May 4, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Publication number: 20100079165
    Abstract: Field programmable device (FPD) chips with large logic capacity and field programmability that are in-circuit programmable are described. FPDs use small versatile nonvolatile nanotube switches that enable efficient architectures for dense low power and high performance chip implementations and are compatible with low cost CMOS technologies and simple to integrate.
    Type: Application
    Filed: August 6, 2009
    Publication date: April 1, 2010
    Inventors: Claude L. Bertin, Brent M. Segal
  • Publication number: 20100073031
    Abstract: Boolean logic circuits comprising nanotube-based switching elements with multiple controls. The Boolean logic circuits include input and output terminals and a network of nanotube switching elements electrically disposed between said at least one input terminal and said output terminal. Each switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel along the nanotube channel element. At least one nanotube switching element non-volatilely retains an informational state and at least one nanotube switching elements volatilely retains an informational state. The network of nanotube switching elements effectuates a Boolean function transformation of Boolean signals on said at least one input terminal.
    Type: Application
    Filed: October 6, 2008
    Publication date: March 25, 2010
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Publication number: 20100060383
    Abstract: Under one aspect, a resonator 400 includes a nanotube element 410 including a non-woven fabric of unaligned nanotubes and having a thickness, and a support structure 404 defining a gap 406 over which the nanotube element 410 is suspended, the thickness of the nanotube element 410 and the length of the gap 406 being selected to provide a pre-specified resonance frequency for the resonator 400 The resonator 400 also includes a conductive element 412 in electrical contact with the nanotube element 410, a drive electrode 408 in spaced relation to the nanotube element 410, and power logic in electrical contact with die at least one drive electrode 408 The power logic provides a series of electrical pulses at a frequency selected to be about the same as the pre-specified resonance frequency of the resonator 400 to the drive electrode 408 during operation of the resonator 400, such that the nanotube element 410 responds to the series of electrical pulses applied to the drive electrode 408 by making a series of mecha
    Type: Application
    Filed: September 5, 2006
    Publication date: March 11, 2010
    Inventors: Jonathan W. Ward, Brent M. Segal
  • Publication number: 20100051880
    Abstract: Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Application
    Filed: November 4, 2009
    Publication date: March 4, 2010
    Inventors: Eliodor G. Ghenciu, Tzong-Ru T. Han, Ramesh SIVARAJAN, Thomas Rueckes, Rahul Sen, Brent M. Segal, Jonathan W. Ward
  • Patent number: 7666382
    Abstract: Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: February 23, 2010
    Assignee: Nantero, Inc.
    Inventors: Eliodor G. Ghenciu, Tzong-Ru Terry Han, Ramesh Sivarajan, Thomas Rueckes, Rahul Sen, Brent M. Segal, Jonathan W. Ward
  • Patent number: 7663911
    Abstract: Nanotube-based switching elements and logic circuits. Under one embodiment of the invention, a switching element includes an input node, an output node, a nanotube channel element having at least one electrically conductive nanotube, and a control electrode. The control electrode is disposed in relation to the nanotube channel element to controllably form an electrically conductive channel between the input node and the output node. The channel at least includes said nanotube channel element. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 16, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7658869
    Abstract: Certain applicator liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in ethyl lactate. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 9, 2010
    Assignee: Nantero, Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent M. Segal
  • Publication number: 20100025659
    Abstract: Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 4, 2010
    Applicant: Nantero, Inc.
    Inventors: CLAUDE L. BERTIN, THOMAS RUECKES, BRENT M. SEGAL, BERNHARD VOGELI, DARREN K. BROCK, VENKATACHALAM C. JAIPRAKASH
  • Publication number: 20100022045
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Application
    Filed: May 20, 2009
    Publication date: January 28, 2010
    Applicant: Nantero, Inc.
    Inventors: BRENT M. SEGAL, THOMAS RUECKES, BERNHARD VOGELI, DARREN K. BROCK, VENKATACHALAM C. JAIPRAKASH, CLAUDE L. BERTIN
  • Patent number: 7652337
    Abstract: Nanotube-based switching elements and logic circuits. Under one aspect, a switching element includes an input node; an output node; a nanotube channel element comprising a ribbon of nanotube fabric; and a control electrode disposed in relation to the nanotube channel element to form an electrically conductive channel between the input node and the output node, wherein the electrically conductive channel at least includes the nanotube channel element. Under another aspect, a switching element includes an input node; an output node; a nanotube channel element comprising at least one electrically conductive nanotube, the nanotube being clamped at both ends by a clamping structure; and a control electrode disposed in relation to the nanotube channel element to form an electrically conductive channel between the input node and the output node, wherein the electrically conductive channel at least includes the nanotube channel element.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 26, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Publication number: 20100012927
    Abstract: Electro-mechanical switches and memory cells using vertically-oriented nanofabric articles and methods of making the same. Under one aspect, a nanotube device includes a substantially horizontal substrate having a vertically oriented feature; and a nanotube film substantially conforming to a horizontal feature of the substrate and also to at least the vertically oriented feature. Under another aspect, an electromechanical device includes a structure having a major horizontal surface and a channel formed therein, the channel having first and second wall electrodes defining at least a portion of first and second vertical walls of the channel; first and second nanotube articles vertically suspended in the channel and in spaced relation to a corresponding first and second wall electrode, and electromechanically deflectable in a horizontal direction toward or away from the corresponding first and second wall electrode in response to electrical stimulation.
    Type: Application
    Filed: September 25, 2006
    Publication date: January 21, 2010
    Applicant: Nantero, Inc.
    Inventors: Venkatachalam C. Jaiprakash, Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7649769
    Abstract: Circuit arrays having cells with combinations of transistors and nanotube switches. Under one embodiment, cells are arranged as pairs with the nanotube switching elements of the pair being cross coupled so that the set electrode of one nanotube switching element is coupled to the release electrode of the other and the release electrode of the one nanotube switching element being coupled to the set electrode of the other. The nanotube articles are coupled to the reference line, and the source of one field effect transistor of a pair is coupled to the set electrode to one of the two nanotube switching elements and the source of the other field effect transistor of the pair is coupled to the release electrode to the one of the two nanotube switching elements.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: January 19, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal, Frank Guo
  • Publication number: 20100005645
    Abstract: Random access memory including nanotube switching elements. A memory cell includes first and second nanotube switching elements and an electronic memory. Each nanotube switching element includes conductive terminals, a nanotube article and control circuitry capable of controllably form and unform an electrically conductive channel between the conductive terminals. The electronic memory is a volatile storage device capable of storing a logic state in response to electrical stimulus. In certain embodiment the electronic memory has cross-coupled first and second inverters in electrical communication with the first and second nanotube switching elements. The cell can operate as a normal electronic memory, or can operate in a shadow memory or store mode (e.g., when power is interrupted) to transfer the electronic memory state to the nanotube switching elements. The device may later be operated in a recall mode where the state of the nanotube switching elements may be transferred to the electronic memory.
    Type: Application
    Filed: August 31, 2009
    Publication date: January 14, 2010
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Publication number: 20090315011
    Abstract: Nanotube device structures and methods of fabrication. A method of making a nanotube switching element includes forming a first structure having at a first output electrode; forming second structure having a second output electrode; forming a conductive article having at least one nanotube, the article having first and second ends; positioning the conductive article between said first and second structures such that the first structure clamps the first and second ends of the article to the second structure, and such that the first and second output electrodes are opposite each other with the article positioned therebetween; providing at least one signal electrode in electrical communication with the conductive article; and providing at least one control electrode in spaced relation to the conductive article such that the control electrode may control the conductive article to form a conductive pathway between the signal electrode and the first output electrode.
    Type: Application
    Filed: August 26, 2009
    Publication date: December 24, 2009
    Inventors: Claude L. BERTIN, Thomas RUECKES, Brent M. SEGAL
  • Publication number: 20090310268
    Abstract: Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches. An electrostatic discharge (ESD) protection circuit for protecting a protected circuit is coupled to an input pad. The ESD circuit includes a nanotube switch electrically having a control. The switch is coupled to the protected circuit and to a discharge path. The nanotube switch is controllable, in response to electrical stimulation of the control, between a de-activated state and an activated state. The activated state creates a current path so that a signal on the input pad flows to the discharge path to cause the signal at the input pad to remain within a predefined operable range for the protected circuit. The nanotube switch, the input pad, and the protected circuit may be on a semiconductor chip. The nanotube switch may be on a chip carrier. The deactivated and activated states may be volatile or non-volatile depending on the embodiment.
    Type: Application
    Filed: July 27, 2009
    Publication date: December 17, 2009
    Inventors: Claude L. BERTIN, Brent M. SEGAL, Thomas RUECKES, Jonathan W. WARD
  • Publication number: 20090296481
    Abstract: An electrically erasable programmable read only memory (EEPROM) cell includes cell selection circuitry and a storage cell for storing the informational state of the cell. The storage cell is an electro-mechanical data retention cell in which the physical positional state of a storage cell element represents the informational state of the cell. The storage cell element is a carbon nanotube switching element. The storage is writable with supply voltages used by said cell selection circuitry. The storage is writable and readable via said selection circuitry with write times and read times being within an order of magnitude. The write times and read times are substantially the same. The storage has no charge storage or no charge trapping.
    Type: Application
    Filed: May 5, 2009
    Publication date: December 3, 2009
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal