Patents by Inventor Brent N. McCallum

Brent N. McCallum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8453457
    Abstract: Dielectric barrier discharge plasma actuators are used to manipulate exhaust flow within and behind a jet engine nozzle. The dielectric barrier discharge plasma actuators may be used to direct cooling airflow near the surface of the nozzle to reduce heating of the nozzle, create thrust vectoring, and reduce noise associated with the exhaust flow exiting the nozzle.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: June 4, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Kerry B. Ginn, Stewart A. Jenkins, David M. Wells, Brent N. McCallum
  • Patent number: 8371104
    Abstract: A vectoring nozzle with external actuation generates thrust vectoring by applying mechanical or fluidic actuation, or both, on the nozzle deck, external sidewalls, and/or air vehicle aft body to produce changes in the aft body flowfield and/or exhaust plume. An external mechanical sidewall may be integrated into a nozzle deck or side walls without the need for engine bleed to supply fluid injectors. An external fluidic vectoring system uses injectors or plasma devices located aft of the nozzle exit to vector the exhaust plume with no external moving parts. Elements of both mechanical and fluidic systems may be combined for a given application.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: February 12, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: David M. Wells, Brent N. McCallum, Kerry B. Ginn, Stewart A. Jenkins
  • Patent number: 8353482
    Abstract: Systems to provide distributed flow control actuation to manage the behavior of a global flow field, are provided. An example of a system can include an aerodynamic structure having an outer surface, and an array of a plurality of nano-scale effectors connected to the outer surface of the aerodynamic structure to be in fluid contact with a flowing fluid when operationally flowing, to induce controlled, globally distributed disturbances at a viscous wall sublayer of a turbulent boundary layer of the flowing fluid when operationally flowing and to manipulate fluid behavior of the flowing fluid to thereby substantially reduce pressure loss associated with incipient separation of the fluid flow from portions of the aerodynamic structure.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: January 15, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Brent N. McCallum, Stewart A. Jenkins, David M. Wells
  • Publication number: 20120222768
    Abstract: Systems to provide distributed flow control actuation to manage the behavior of a global flow field, are provided. An example of a system can include an aerodynamic structure having an outer surface, and an array of a plurality of nano-scale effectors connected to the outer surface of the aerodynamic structure to be in fluid contact with a flowing fluid when operationally flowing, to induce controlled, globally distributed disturbances at a viscous wall sublayer of a turbulent boundary layer of the flowing fluid when operationally flowing and to manipulate fluid behavior of the flowing fluid to thereby substantially reduce pressure loss associated with incipient separation of the fluid flow from portions of the aerodynamic structure.
    Type: Application
    Filed: May 10, 2012
    Publication date: September 6, 2012
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Daniel N. Miller, Brent N. McCallum, Stewart A. Jenkins, David M. Wells
  • Patent number: 8240616
    Abstract: Systems and methods to provide distributed flow control actuation to manage the behavior of a global flow field, are provided. An example of a system can include an aerodynamic structure having an outer surface, and an array of a plurality of effectors connected to the outer surface of the aerodynamic structure to be in fluid contact with a flowing fluid when operationally flowing, to induce controlled, globally distributed disturbances at a viscous wall sublayer of a turbulent boundary layer of the flowing fluid when operationally flowing and to manipulate fluid behavior of the flowing fluid to thereby substantially reduce pressure loss associated with incipient separation of the fluid flow from portions of the aerodynamic structure.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 14, 2012
    Inventors: Daniel N. Miller, Brent N. McCallum, Stewart A. Jenkins, David M. Wells
  • Publication number: 20110048025
    Abstract: Dielectric barrier discharge plasma actuators are used to manipulate exhaust flow within and behind a jet engine nozzle. The dielectric barrier discharge plasma actuators may be used to direct cooling airflow near the surface of the nozzle to reduce heating of the nozzle, create thrust vectoring, and reduce noise associated with the exhaust flow exiting the nozzle.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: Lockheed Martin Corporation
    Inventors: Kerry B. Ginn, Stewart A. Jenkins, David M. Wells, Brent N. McCallum
  • Patent number: 7874525
    Abstract: A fully fixed, non-articulating geometry vehicle that includes a number of virtual control surfaces operable to replicate a mechanical control surface's functionality. These virtual control surfaces further include a number of flow control devices on the non-articulating vehicle surface. The plurality of flow control surfaces is operable to induce secondary flow structure(s) within a boundary layer of a fluid flow over the non-articulating vehicle surface. A virtual control surface controller is operable to dynamically adjust a frequency and amplitude of the secondary flow structure(s) in order to reposition the virtual control surface. A vehicle control and stability system communicatively coupled to the plurality of virtual control surfaces is operable to direct positioning of the plurality of virtual control surfaces in response to vehicle control commands.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Brent N. McCallum
  • Publication number: 20100270433
    Abstract: Systems and methods to provide distributed flow control actuation to manage the behavior of a global flow field, are provided. An example of a system can include an aerodynamic structure having an outer surface, and an array of a plurality of effectors connected to the outer surface of the aerodynamic structure to be in fluid contact with a flowing fluid when operationally flowing, to induce controlled, globally distributed disturbances at a viscous wall sublayer of a turbulent boundary layer of the flowing fluid when operationally flowing and to manipulate fluid behavior of the flowing fluid to thereby substantially reduce pressure loss associated with incipient separation of the fluid flow from portions of the aerodynamic structure.
    Type: Application
    Filed: April 22, 2009
    Publication date: October 28, 2010
    Applicant: Lockheed Martin Corporation
    Inventors: Daniel N. Miller, Brent N. McCallum, Stewart A. Jenkins, David M. Wells
  • Publication number: 20100089031
    Abstract: A vectoring nozzle with external actuation generates thrust vectoring by applying mechanical or fluidic actuation, or both, on the nozzle deck, external sidewalls, and/or air vehicle aft body to produce changes in the aft body flowfield and/or exhaust plume. An external mechanical sidewall may be integrated into a nozzle deck or side walls without the need for engine bleed to supply fluid injectors. An external fluidic vectoring system uses injectors or plasma devices located aft of the nozzle exit to vector the exhaust plume with no external moving parts. Elements of both mechanical and fluidic systems may be combined for a given application.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: David M. Wells, Brent N. McCallum, Kerry B. Ginn, Stewart A. Jenkins
  • Publication number: 20090308980
    Abstract: A fully fixed, non-articulating geometry vehicle that includes a number of virtual control surfaces operable to replicate a mechanical control surface's functionality. These virtual control surfaces further include a number of flow control devices on the non-articulating vehicle surface. The plurality of flow control surfaces is operable to induce secondary flow structure(s) within a boundary layer of a fluid flow over the non-articulating vehicle surface. A virtual control surface controller is operable to dynamically adjust a frequency and amplitude of the secondary flow structure(s) in order to reposition the virtual control surface. A vehicle control and stability system communicatively coupled to the plurality of virtual control surfaces is operable to direct positioning of the plurality of virtual control surfaces in response to vehicle control commands.
    Type: Application
    Filed: May 4, 2006
    Publication date: December 17, 2009
    Inventors: Daniel N. Miller, Brent N. McCallum
  • Patent number: 6575407
    Abstract: A subdermally-reinforced elastomeric transition is provided in which an elastomeric skin is attached to a plurality of subdermal supporting members that engage subdermal reinforcing members. The reinforcing members may be rods or support rails which the supporting members engage. The supporting members may be attached to the elastomeric skin in an orientation that is perpendicular to a direction of strain of the skin and may have a plurality of holes or slots for receiving the reinforcing members. Alternatively, the supporting members may be oriented to be parallel to the direction of strain of the skin, the reinforcing members being located substantially within the supporting members.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: June 10, 2003
    Assignee: Lockheed Martin Corporation
    Inventors: Brent N. McCallum, Kendall G. Young
  • Publication number: 20020043590
    Abstract: A subdermally-reinforced elastomeric transition is provided in which an elastomeric skin is attached to a plurality of subdermal supporting members that engage subdermal reinforcing members. The reinforcing members may be rods or support rails which the supporting members engage. The supporting members may be attached to the elastomeric skin in an orientation that is perpendicular to a direction of strain of the skin and may have a plurality of holes or slots for receiving the reinforcing members. Alternatively, the supporting members may be oriented to be parallel to the direction of strain of the skin, the reinforcing members being located substantially within the supporting members.
    Type: Application
    Filed: August 30, 2001
    Publication date: April 18, 2002
    Inventors: Brent N. McCallum, Kendall G. Young