Patents by Inventor Brent Segal

Brent Segal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060237805
    Abstract: Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes.
    Type: Application
    Filed: January 17, 2006
    Publication date: October 26, 2006
    Applicant: Nantero, Inc.
    Inventors: Brent Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam Jaiprakash, Claude Bertin
  • Publication number: 20060231865
    Abstract: Three-trace electromechanical devices and methods of using same are described. The device of the present invention includes first and second electrically conductive elements with a nanotube ribbon (or other electromechanical elements) disposed therebetween. The nanotube ribbon is capable of maintaining its position after removing an electrical stimulus applied to at least one of the first and second electrically conductive elements. Such devices may be formed into arrays of cells. One of the conductive elements may be used to create an attractive force to cause the nanotube ribbon to contact a conductive element, and the other conductive element may be used to create an attractive force to pull the nanotube ribbon from contact with the contacted conductive element. The electrically conductive traces may be aligned or unaligned with one another.
    Type: Application
    Filed: June 15, 2006
    Publication date: October 19, 2006
    Applicant: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent Segal, Claude Bertin
  • Publication number: 20060204427
    Abstract: Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Application
    Filed: December 15, 2005
    Publication date: September 14, 2006
    Applicant: Nantero, Inc.
    Inventors: Eliodor Ghenciu, Tzong-Ru Han, Ramesh Sivarajan, Thomas Rueckes, Rahul Sen, Brent Segal, Jonathan Ward
  • Publication number: 20060193093
    Abstract: Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches. An electrostatic discharge (ESD) protection circuit for protecting a protected circuit is coupled to an input pad. The ESD circuit includes a nanotube switch electrically having a control. The switch is coupled to the protected circuit and to a discharge path. The nanotube switch is controllable, in response to electrical stimulation of the control, between a de-activated state and an activated state. The activated state creates a current path so that a signal on the input pad flows to the discharge path to cause the signal at the input pad to remain within a predefined operable range for the protected circuit. The nanotube switch, the input pad, and the protected circuit may be on a semiconductor chip. The nanotube switch may be on a chip carrier. The deactivated and activated states may be volatile or non-volatile depending on the embodiment.
    Type: Application
    Filed: November 2, 2005
    Publication date: August 31, 2006
    Applicant: Nantero, Inc.
    Inventors: Claude Bertin, Brent Segal, Thomas Rueckes, Jonathan Ward
  • Publication number: 20060125033
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Application
    Filed: January 17, 2006
    Publication date: June 15, 2006
    Applicant: Nantero, Inc.
    Inventors: Brent Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam Jaiprakash, Claude Bertin
  • Publication number: 20060128049
    Abstract: Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric.
    Type: Application
    Filed: June 21, 2005
    Publication date: June 15, 2006
    Inventors: Venkatachalam Jaiprakash, Jonathan Ward, Thomas Rueckes, Brent Segal
  • Publication number: 20050281084
    Abstract: Methods of producing an electromechanical circuit element are described. A lower structure having lower support structures and a lower electrically conductive element is provided. A nanotube ribbon (or other electromechanically responsive element) is formed on an upper surface of the lower structure so as to contact the lower support structures. An upper structure is provided over the nanotube ribbon. The upper structure includes upper support structures and an upper electrically conductive element. In some arrangements, the upper and lower electrically conductive elements are in vertical alignment, but in some arrangements they are not.
    Type: Application
    Filed: July 25, 2005
    Publication date: December 22, 2005
    Inventors: Thomas Rueckes, Brent Segal, Darren Brock
  • Publication number: 20050269554
    Abstract: Certain applicator liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in ethyl lactate. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Application
    Filed: June 3, 2004
    Publication date: December 8, 2005
    Applicant: Nantero, Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent Segal
  • Publication number: 20050269553
    Abstract: Certain spin-coatable liquids and application techniques are described, which can be used to form nanotube films or fabrics of controlled properties. A spin-coatable liquid containing nanotubes for use in an electronics fabrication process includes a solvent containing a plurality of nanotubes. The nanotubes are at a concentration of greater than 1 mg/L. The nanotubes are pretreated to reduce the level of metallic and particulate impurities to a preselected level, and the preselected metal and particulate impurities levels are selected to be compatible with an electronics manufacturing process. The solvent also is selected for compatibility with an electronics manufacturing process.
    Type: Application
    Filed: June 3, 2004
    Publication date: December 8, 2005
    Applicant: Nantero, Inc.
    Inventors: Rahul Sen, Ramesh Sivarajan, Thomas Rueckes, Brent Segal
  • Publication number: 20050270824
    Abstract: Nanotube-based switching elements with multiple controls and circuits made from such. A switching element includes an input node, an output node, and a nanotube channel element having at least one electrically conductive nanotube. A control structure is disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The output node is constructed and arranged so that channel formation is substantially unaffected by the electrical state of the output node. The control structure includes a control electrode and a release electrode, disposed on opposite sides of the nanotube channel element. The control and release may be used to form a differential input, or if the device is constructed appropriately to operate the circuit in a non-volatile manner. The switching elements may be arranged into logic circuits and latches having differential inputs and/or non-volatile behavior depending on the construction.
    Type: Application
    Filed: August 4, 2005
    Publication date: December 8, 2005
    Applicant: Nantero, Inc.
    Inventors: Claude Bertin, Thomas Rueckes, Brent Segal
  • Publication number: 20050191495
    Abstract: Nanotube films and articles and methods of making the same are disclosed. A conductive article or a substrate comprises at least two unaligned nanotubes extending substantially parallel to the substrate and each contacting end points of the article but each unaligned relative to the other, the nanotubes providing a conductive pathway within a predefined space.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 1, 2005
    Inventors: Thomas Rueckes, Brent Segal
  • Publication number: 20050174842
    Abstract: EEPROMS Using Carbon Nanotubes for Cell Storage. An electrically erasable programmable read only memory (EEPROM) cell includes cell selection circuitry and a storage cell for storing the informational state of the cell. The storage cell is an electro-mechanical data retention cell in which the physical positional state of a storage cell element represents the informational state of the cell. The storage cell element is a carbon nanotube switching element. The storage is writable with supply voltages used by said cell selection circuitry. The storage is writable and readable via said selection circuitry with write times and read times being within an order of magnitude. The write times and read times are substantially the same. The storage has no charge storage or no charge trapping.
    Type: Application
    Filed: February 8, 2005
    Publication date: August 11, 2005
    Inventors: Claude Bertin, Thomas Rueckes, Brent Segal
  • Publication number: 20050128788
    Abstract: Nanowire articles and methods of making the same are disclosed. A conductive article includes a plurality of inter-contacting nanowire segments that define a plurality of conductive pathways along the article. The nanowire segments may be semiconducting nanowires, metallic nanowires, nanotubes, single walled carbon nanotubes, multi-walled carbon nanotubes, or nanowires entangled with nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. A strapping material may be positioned to contact a portion of the plurality of nanowire segments. The strapping material may be patterned to create the shape of a frame with an opening that exposes an area of the nanowire fabric. Such a strapping layer may also be used for making electrical contact to the nanowire fabric especially for electrical stitching to lower the overall resistance of the fabric.
    Type: Application
    Filed: September 8, 2004
    Publication date: June 16, 2005
    Inventors: Brent Segal, Thomas Rueckes, Claude Bertin
  • Publication number: 20050101112
    Abstract: Nanotube films and articles and methods of making the same are disclosed. A conductive article includes an aggregate of nanotube segments in which the nanotube segments contact other nanotube segments to define a plurality of conductive pathways along the article. The nanotube segments may be single walled carbon nanotubes, or multi-walled carbon nanotubes. The various segments may have different lengths and may include segments having a length shorter than the length of the article. The articles so formed may be disposed on substrates, and may form an electrical network of nanotubes within the article itself. Conductive articles may be made on a substrate by forming a nanotube fabric on the substrate, and defining a pattern within the fabric in which the pattern corresponds to the conductive article.
    Type: Application
    Filed: December 13, 2004
    Publication date: May 12, 2005
    Applicant: Nantero, Inc.
    Inventors: Thomas Rueckes, Brent Segal
  • Publication number: 20050074926
    Abstract: Methods of making non-volatile field effect devices and arrays of same. Under one embodiment, a method of making a non-volatile field effect device includes providing a substrate with a field effect device formed therein. The field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. An electromechanically-deflectable, nanotube switching element is formed over the field effect device. Terminals and corresponding interconnect are provided to correspond to each of the source, drain and gate such that the nanotube switching element is electrically positioned between one of the source, drain and gate and its corresponding terminal, and such that the others of said source, drain and gate are directly connected to their corresponding terminals.
    Type: Application
    Filed: June 9, 2004
    Publication date: April 7, 2005
    Inventors: Claude Bertin, Thomas Rueckes, Brent Segal
  • Publication number: 20050063244
    Abstract: Field effect devices having a gate controlled via a nanotube switching element. Under one embodiment, a non-volatile transistor device includes a source region and a drain region of a first semiconductor type of material and each in electrical communication with a respective terminal. A channel region of a second semiconductor type of material is disposed between the source and drain region. A gate structure is disposed over an insulator over the channel region and has a corresponding terminal. A nanotube switching element is responsive to a first control terminal and a second control terminal and is electrically positioned in series between the gate structure and the terminal corresponding to the gate structure. The nanotube switching element is electromechanically operable to one of an open and closed state to thereby open or close an electrical communication path between the gate structure and its corresponding terminal.
    Type: Application
    Filed: June 9, 2004
    Publication date: March 24, 2005
    Inventors: Claude Bertin, Thomas Rueckes, Brent Segal
  • Publication number: 20050062035
    Abstract: Non-volatile field effect devices and circuits using same. A non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate have a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically positioned between one of the source, drain and gate and its corresponding terminal. The others of the source, drain and gate are directly connected to their corresponding terminals. The nanotube switching element is electromechanically-deflectable in response to electrical stimulation at two control terminals to create one of a non-volatile open and non-volatile closed electrical communication state between the one of the source, drain and gate and its corresponding terminal. Under one embodiment, one of the two control terminals has a dielectric surface for contact with the nanotube switching element when creating a non-volatile open state.
    Type: Application
    Filed: June 9, 2004
    Publication date: March 24, 2005
    Inventors: Claude Bertin, Thomas Rueckes, Brent Segal, Bernhard Vogeli, Darren Brock, Venkatachalam Jaiprakash
  • Publication number: 20050063210
    Abstract: A hybrid memory system having electromechanical memory cells is disclosed. A memory cell core circuit has an array of electromechanical memory cells, in which each cell is a crossbar junction at least one element of which is a nanotube or a nanotube ribbon. An access circuit provides array addresses to the memory cell core circuit to select at least one corresponding cell. The access circuit is constructed of semiconductor circuit elements.
    Type: Application
    Filed: October 13, 2004
    Publication date: March 24, 2005
    Inventors: Brent Segal, Darren Brock, Thomas Rueckes
  • Publication number: 20050065741
    Abstract: Sensor platforms and methods of making them are described. A platform having a non-horizontally oriented sensor element comprising one or more nanostructures such as nanotubes is described. Under certain embodiments, a sensor element has or is made to have an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes. Under certain embodiments, the sensor element comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing one or more nanotubes on the structure to provide material for a sensor element; and providing circuitry to electrically sense the sensor element's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under other embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning.
    Type: Application
    Filed: May 12, 2004
    Publication date: March 24, 2005
    Applicant: Nantero, Inc.
    Inventors: Brent Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam Jaiprakash, Claude Bertin
  • Publication number: 20050062062
    Abstract: One-time programmable, non-volatile field effect devices and methods of making same. Under one embodiment, a one-time-programmable, non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate has a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically coupled to one of the source, drain and gate and has an electromechanically-deflectable nanotube element that is positioned to be deflectable in response to electrical stimulation to form a non-volatile closed electrical state between the one of the source, drain and gate and its corresponding terminal.
    Type: Application
    Filed: June 9, 2004
    Publication date: March 24, 2005
    Inventors: Claude Bertin, Thomas Rueckes, Brent Segal, Bernhard Vogeli, Darren Brock, Venkatachalam Jaiprakash