Patents by Inventor Brent Stephen Robinson

Brent Stephen Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9179844
    Abstract: A handheld skin monitoring or measuring device includes a camera having a camera optical axis; and a structured light arrangement configured to project three or more laser fan beams such that the laser fan beams cross at a crossing point in front of the camera.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 10, 2015
    Assignee: ARANZ HEALTHCARE LIMITED
    Inventors: William Richard Fright, Brent Stephen Robinson, Shane Robert Goodwin, Bruce Clinton McCallum, Philip John Barclay
  • Publication number: 20130137991
    Abstract: A handheld skin monitoring or measuring device includes a camera having a camera optical axis; and a structured light arrangement configured to project three or more laser fan beams such that the laser fan beams cross at a crossing point in front of the camera.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 30, 2013
    Inventors: William Richard Fright, Brent Stephen Robinson, Shane Robert Goodwin, Bruce Clinton McCallum, Philip John Barclay
  • Publication number: 20120165670
    Abstract: Ultrasound aberration, especially in transcranial imaging or therapy, is corrected by capturing the laterally two-dimensional nature of the aberration in the ultrasound being received, as by means of a two-dimensional receiving transducer array (104, 108). In some embodiments, transmissive ultrasound (164) is applied through the temporal window and is, for example, emitted from one or more real or virtual point sources (160) at a time, each point source being a single transducer element or patch or the geometrical focus of a collection of elements or patches. A patch may serve, in one aspect as a small focused transducer in the near field. A contralateral array (104, 108) is, in one version, comprised of the point sources.
    Type: Application
    Filed: August 25, 2010
    Publication date: June 28, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: William Tao Shi, Francois Guy Gerard Marie Vignon, Jeffry Earl Powers, Brent Stephen Robinson, Michael Richard Burcher, Vijay Shamdasani
  • Patent number: 6695783
    Abstract: A digital multiline beamformer is provided which produces multiple receive beams in response to a single transmit event. An embodiment of the present invention includes a bulk delay which provides a common steering delay applicable to all of the beams received at one time. The bulk delay is succeeded by parallel filter processing paths which produce finely focused multiple beams simultaneously. In one embodiment a multiphase filter produces the samples for multiple beams, which is advantageous when the number of simultaneously produced beams is greater than the number of phases produced by the fine focus filter.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: February 24, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Derek Henderson, Brent Stephen Robinson, James Moore, David N. Roundhill, Gary Allen Schwartz
  • Patent number: 6623432
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: September 23, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick Rene' Pesque
  • Patent number: 6585648
    Abstract: A system, method, and machine readable program for performing ultrasonic Fat TX, Multiline RX imaging is provided, wherein the system comprises a transmitter to launch an ultrasound beam toward a target, the beam having a predetermined spatial energy profile in at least one location in the target, the transmitter including a plurality of transducer elements, each transducer element capable of producing a selected waveform having a desired shape; a transmitter processor configured to control the shape of the waveform produced by each transducer element, wherein the spatial energy profile of the beam is controlled by controlling the shape of the waveform produced by each transducer element; a receiver to receive energy from the ultrasound beam directed toward the target from the transmitter; and a receiver processor configured to process the received energy to determine image data representative of the target.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 1, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Brent Stephen Robinson
  • Patent number: 6582367
    Abstract: An ultrasonic 2D array has elements extending in two dimensions which can be individually controlled and operated to form a 2D array for scanning a volumetric region in three dimensions. Individual ones of the elements can also be selected and operated together to form a 1D array for scanning a planar region in two dimensions. The array transmits scanlines to scan the volumetric region and the planar region in a time interleaved manner with the frame rate of the planar region be higher than that of the volumetric region. A spectral display may also be produced of a sample volume located in the planar region.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: June 24, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Andrew L. Robinson, David N. Roundhill, Brent Stephen Robinson, Paul Detmer
  • Patent number: 6494838
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: December 17, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Clifford R. Cooley, Brent Stephen Robinson
  • Patent number: 6482157
    Abstract: Multiline acquisition is used to acquire groups of beams in response to transmit pulses. At least some of the beams from spatially adjacent groups are coaxially aligned. The echo information is detected and coaxially aligned beams are blended together using weighting functions which vary as a function of the time and location of the blended beams from their transmit beam apertures to gradually blend the aligned beams together spatially, thereby reducing multiline image artifacts. Echoes from moving objects in coaxially aligned beams may be aligned axially before the beams are blended together.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: November 19, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Brent Stephen Robinson
  • Patent number: 6471650
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: October 29, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick René Pesque
  • Patent number: 6471652
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: October 29, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson
  • Patent number: 6468216
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: October 22, 2002
    Assignee: Kininklijke Philips Electronics N.V.
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick René Pesque
  • Publication number: 20020143253
    Abstract: Multiline acquisition is used to acquire groups of beams in response to transmit pulses. At least some of the beams from spatially adjacent groups are coaxially aligned. The echo information is detected and coaxially aligned beams are blended together using weighting functions which vary as a function of the time and location of the blended beams from their transmit beam apertures to gradually blend the aligned beams together spatially, thereby reducing multiline image artifacts. Echoes from moving objects in coaxially aligned beams may be aligned axially before the beams are blended together.
    Type: Application
    Filed: March 30, 2001
    Publication date: October 3, 2002
    Inventor: Brent Stephen Robinson
  • Patent number: 6432056
    Abstract: An ultrasonic diagnostic imaging system is provided which produces scanlines with synthesized transmit foci at a high frame rate of display. Beams are transmitted and received which have different beam steering and focal characteristics. At least one of the received beams is weighted and the steering and focal characteristics of the weighted received beams are interpolated to form scanlines for display which exhibit the focal properties of both beams.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: August 13, 2002
    Assignee: ATL Ultrasound
    Inventors: Clifford R. Cooley, Thomas J Sabourin, Brent Stephen Robinson
  • Patent number: 6419633
    Abstract: An ultrasonic 2D array has elements extending in two dimensions which can be individually controlled and operated to form a 2D array for scanning a volumetric region in three dimensions. Individual ones of the elements can also be selected and operated together to form a 1D array for scanning a planar region in two dimensions. An ultrasonic probe containing the inventive array can be quickly switched between two and three dimensional imaging modes to produce both a three dimensional image and a two dimensional image in real time.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: July 16, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Andrew L. Robinson, Brent Stephen Robinson, Paul Detmer
  • Publication number: 20020082500
    Abstract: A digital multiline beamformer is provided which produces multiple receive beams in response to a single transmit event. An embodiment of the present invention includes a bulk delay which provides a common steering delay applicable to all of the beams received at one time. The bulk delay is succeeded by parallel filter processing paths which produce finely focused multiple beams simultaneously. In one embodiment a multiphase filter produces the samples for multiple beams, which is advantageous when the number of simultaneously produced beams is greater than the number of phases produced by the fine focus filter.
    Type: Application
    Filed: December 22, 2000
    Publication date: June 27, 2002
    Inventors: Derek Henderson, Brent Stephen Robinson, James Moore, David N. Roundhill, Gary Allen Schwartz
  • Publication number: 20020045827
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Application
    Filed: July 31, 2001
    Publication date: April 18, 2002
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick Rene Pesque
  • Publication number: 20020045822
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Application
    Filed: July 17, 2001
    Publication date: April 18, 2002
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick Rene?apos; Pesque
  • Publication number: 20020045830
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Application
    Filed: July 19, 2001
    Publication date: April 18, 2002
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick Rene?apos; Pesque
  • Publication number: 20020045826
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Application
    Filed: July 24, 2001
    Publication date: April 18, 2002
    Inventors: Jeffry E. Powers, Michalakis Averkiou, Matthew Bruce, Danny M. Skyba, Robert R. Entrekin, John D. Fraser, Clifford R. Cooley, Brent Stephen Robinson, David N. Roundhill, Gary Allen Schwartz, Patrick Rene' Pesque