Patents by Inventor Brent T. Fultz

Brent T. Fultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10573932
    Abstract: In an aspect, an electrochemical cell comprises: a positive electrode; a negative electrode, said negative electrode having an alloy having a composition comprising V; and an electrolyte; wherein an additive is provided in said electrolyte to form primary vanadate ions upon dissociation of said additive in said electrolyte; and wherein the electrochemical cell is a metal hydride battery. In some embodiments of this aspect, the alloy is configured to sorb hydrogen during charging of said electrochemical cell and desorb hydrogen during discharging of said electrochemical cell. In some embodiments of this aspect, the electrolyte has a pH selected from the range of 13 to 15.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 25, 2020
    Assignee: California Institute of Technology
    Inventors: Heng Yang, Nicholas J. Weadock, Brent T. Fultz, Bryce W. Edwards
  • Patent number: 10211457
    Abstract: Methods of preparing improved metal hydride alloy materials are provided. The alloys include a mixture of at least four of vanadium, titanium, nickel, chromium, and iron. The alloy is processed by at least one of thermal and physical treatment to generate a refined microstructure exhibiting improved kinetics when used as electrodes in MH batteries (e.g., higher discharge current). The thermal treatment includes rapid cooling of the alloy at greater than 104 K/s. The physical treatment includes mechanical pulverization of the alloy after cooling. The microstructure is a single phase (body centered cubic) with a heterogeneous composition including a plurality of primary regions having a lattice parameter selected from the range of 3.02 ? to 3.22 ? and a plurality of secondary regions having a lattice parameter selected from the range of 3.00 ? to 3.22 ? and at least one physical dimension having a maximum average value less than 1 ?m.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: February 19, 2019
    Assignee: California Institute of Technology
    Inventors: Nicholas J. Weadock, Hongjin Tan, Brent T. Fultz, Heng Yang
  • Publication number: 20190006718
    Abstract: In an aspect, an electrochemical cell comprises: a positive electrode; a negative electrode, said negative electrode having an alloy having a composition comprising V; and an electrolyte; wherein an additive is provided in said electrolyte to form primary vanadate ions upon dissociation of said additive in said electrolyte; and wherein the electrochemical cell is a metal hydride battery. In some embodiments of this aspect, the alloy is configured to sorb hydrogen during charging of said electrochemical cell and desorb hydrogen during discharging of said electrochemical cell. In some embodiments of this aspect, the electrolyte has a pH selected from the range of 13 to 15.
    Type: Application
    Filed: June 1, 2018
    Publication date: January 3, 2019
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Heng YANG, Nicholas J. WEADOCK, Brent T. FULTZ, Bryce W. EDWARDS
  • Publication number: 20160344022
    Abstract: Methods of preparing improved metal hydride alloy materials are provided. The alloys include a mixture of at least four of vanadium, titanium, nickel, chromium, and iron. The alloy is processed by at least one of thermal and physical treatment to generate a refined microstructure exhibiting improved kinetics when used as electrodes in MH batteries (e.g., higher discharge current). The thermal treatment includes rapid cooling of the alloy at greater than 104K/s. The physical treatment includes mechanical pulverization of the alloy after cooling. The microstructure is a single phase (body centered cubic) with a heterogeneous composition including a plurality of primary regions having a lattice parameter selected from the range of 3.02 ? to 3.22 ? and a plurality of secondary regions having a lattice parameter selected from the range of 3.00 ? to 3.22 ? and at least one physical dimension having a maximum average value less than 1 ?m.
    Type: Application
    Filed: February 17, 2016
    Publication date: November 24, 2016
    Inventors: Nicholas J. WEADOCK, Hongjin TAN, Brent T. FULTZ, Heng YANG
  • Patent number: 9067848
    Abstract: Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 30, 2015
    Assignee: California Institute of Technology
    Inventors: Nicholas P. Stadie, Brent T Fultz, Channing Ahn, Maxwell Murialdo
  • Patent number: 8901892
    Abstract: Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: December 2, 2014
    Assignees: California Institute of Technology, Centre National de la Recherche Scientifique
    Inventors: Rachid Yazami, Joseph McMenamin, Yvan Reynier, Brent T. Fultz
  • Publication number: 20140113811
    Abstract: Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 24, 2014
    Inventors: Nicholas P. STADIE, Brent T. FULTZ, Channing AHN, Maxwell MURIALDO
  • Publication number: 20130271089
    Abstract: Described herein are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate, the cycle life and the state of health of an electrochemical cell. Also provided are systems and methods for charging electrochemical cells; for example, systems and methods for charging an electrochemical according to its state of health.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 17, 2013
    Inventors: Rachid YAZAMI, Joseph MCMENAMIN, Yvan REYNIER, Brent T. FULTZ
  • Patent number: 8446127
    Abstract: Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 21, 2013
    Assignees: California Institute of Technology, Centre National de la Recherche Scientifique
    Inventors: Rachid Yazami, Joseph McMenamin, Yvan Reynier, Brent T. Fultz
  • Patent number: 7781102
    Abstract: Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula SizGe(z-1), where 0<z?1; formula SizGe(z-1), where 0<z<1; and/or germanium exhibit a combination of improved capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: August 24, 2010
    Assignees: California Institute of Technology, Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Jason A. Graetz, Brent T. Fultz, Channing Ahn, Rachid Yazami
  • Publication number: 20100190059
    Abstract: Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula SizGe(z-1), where 0<z?1; formula SizGe(z-1), where 0<z<1; and/or germanium exhibit a combination of improved capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.
    Type: Application
    Filed: April 22, 2004
    Publication date: July 29, 2010
    Inventors: Jason A. Graetz, Brent T. Fultz, Channing Ahn, Rachid Yazami
  • Publication number: 20100090650
    Abstract: Described herein are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate, the cycle life and the state of health of an electrochemical cell. Also provided are systems and methods for charging electrochemical cells; for example, systems and methods for charging an electrochemical according to its state of health.
    Type: Application
    Filed: August 7, 2009
    Publication date: April 15, 2010
    Inventors: Rachid Yazami, Joseph McMenamin, Yvan Reynier, Brent T. Fultz
  • Publication number: 20100074832
    Abstract: Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.
    Type: Application
    Filed: May 5, 2009
    Publication date: March 25, 2010
    Applicants: California Institute of Technology, Centre National De La Recherche Scientifique
    Inventors: Anne Dailly, Channing Ahn, Rachid Yazami, Brent T. Fultz
  • Patent number: 7595611
    Abstract: The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: September 29, 2009
    Assignees: California Institute of Technology, Cantre National de le Recherche Scientifique
    Inventors: Yvan Reynier, Rachid Yazami, Brent T. Fultz
  • Patent number: 7537682
    Abstract: Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: May 26, 2009
    Assignees: California Institute of Technology, Centre National de la Recherche Scientifique
    Inventors: Anne Dailly, Channing Ahn, Rachid Yazami, Brent T. Fultz
  • Publication number: 20040126659
    Abstract: Electrodes comprising lithium alloyed with nanostructured silicon materials exhibit improved capacities, cycle lives, and/or cycling rates compared with similar electrodes made from bulk silicon. The electrodes do not require a conductive diluent such as carbon black. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.
    Type: Application
    Filed: September 10, 2003
    Publication date: July 1, 2004
    Inventors: Jason A. Graetz, Brent T. Fultz, Channing Ahn, Rachid Yazami
  • Patent number: 6074453
    Abstract: A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: June 13, 2000
    Assignees: Iowa State University Research Foundation, Inc., California Institute of Technology
    Inventors: Iver E. Anderson, Timothy W. Ellis, Vitalij K. Pecharsky, Jason Ting, Robert Terpstra, Robert C. Bowman, Charles K. Witham, Brent T. Fultz, Ratnakumar V. Bugga
  • Patent number: 4393306
    Abstract: Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.
    Type: Grant
    Filed: December 5, 1980
    Date of Patent: July 12, 1983
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Brent T. Fultz