Patents by Inventor Brent Wheelock

Brent Wheelock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11125899
    Abstract: A method including: obtaining geophysical data for a subsurface region; generating, with a computer, at least two subsurface property models of the subsurface region for at least two subsurface properties by performing an inversion that minimizes a misfit between the geophysical data and forward simulated data subject to one or more constraints, the inversion including generating updates to the at least two subsurface property models for at least two different scenarios that both fit the geophysical data with a same likelihood but have different values for model materiality, with the model materiality being posed as an equality constraint in the inversion, wherein the model materiality is a functional of model parameters that characterize hydrocarbon potential of the subsurface region; analyzing a geophysical data misfit curve or geophysical data misfit likelihood curve, over a predetermined range of values of the model materiality to identify the at least two subsurface property models that correspond to a h
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 21, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Brent Wheelock, Jan Schmedes, Ratnanabha Sain
  • Patent number: 10662768
    Abstract: Methods of determining a spatial distribution of an injected tracer material within a subterranean formation are disclosed, including flowing the tracer material, which includes a tracer electrical capacitance that differs from a formation electrical capacitance of a region of the subterranean formation, into the region of the subterranean formation via a wellbore. Subsequent to the flowing, the methods also include providing an input electromagnetic signal to the region of the subterranean formation. Responsive to the providing, the methods further include receiving an output electromagnetic signal from the subterranean formation. The methods further include determining the spatial distribution of the tracer material within the subterranean formation based, at least in part, on the output electromagnetic signal.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Brent Wheelock, Mehmet Deniz Ertas, Lang Feng, Qiuzi Li, Harry W. Deckman
  • Publication number: 20190056518
    Abstract: A method including: obtaining geophysical data for a subsurface region; generating, with a computer, at least two subsurface property models of the subsurface region for at least two subsurface properties by performing an inversion that minimizes a misfit between the geophysical data and forward simulated data subject to one or more constraints, the inversion including generating updates to the at least two subsurface property models for at least two different scenarios that both fit the geophysical data with a same likelihood but have different values for model materiality, with the model materiality being posed as an equality constraint in the inversion, wherein the model materiality is a functional of model parameters that characterize hydrocarbon potential of the subsurface region; analyzing a geophysical data misfit curve or geophysical data misfit likelihood curve, over a predetermined range of values of the model materiality to identify the at least two subsurface property models that correspond to a h
    Type: Application
    Filed: July 16, 2018
    Publication date: February 21, 2019
    Inventors: Brent Wheelock, Jan Schmedes, Ratnanabha Sain
  • Publication number: 20180149020
    Abstract: Methods of determining a spatial distribution of an injected tracer material within a subterranean formation are disclosed, including flowing the tracer material, which includes a tracer electrical capacitance that differs from a formation electrical capacitance of a region of the subterranean formation, into the region of the subterranean formation via a wellbore. Subsequent to the flowing, the methods also include providing an input electromagnetic signal to the region of the subterranean formation. Responsive to the providing, the methods further include receiving an output electromagnetic signal from the subterranean formation. The methods further include determining the spatial distribution of the tracer material within the subterranean formation based, at least in part, on the output electromagnetic signal.
    Type: Application
    Filed: August 1, 2017
    Publication date: May 31, 2018
    Inventors: Brent Wheelock, Mehmet Deniz Ertas, Lang Feng, Qiuzi Li, Harry W. Deckman