Patents by Inventor Brenton L. Dickey

Brenton L. Dickey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6975021
    Abstract: The invention relates to a carrier for supporting a substrate film during the chip-substrate assembly and bonding process. The carrier provides enhanced rigidity to the substrate film. The degree of rigidity and/or flexibility provided can be controlled by selection of the carrier dimensions, configuration and material choice. Advantages of embodiments of the carrier include easier handling, reduced probability of defective end products, and increased control in choosing the thinness of the substrate film. For example, the substrate film carrier can be used for lead-over-chip (LOC) assemblies and lead-under-chip (LUC) assemblies to create ball grid arrays (BGA), pin grid arrays (PGA), dual in-line packages (DIP), and the like.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: December 13, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Brenton L. Dickey
  • Patent number: 6897092
    Abstract: The invention relates to a carrier for supporting a substrate film during the chip-substrate assembly and bonding process. The carrier provides enhanced rigidity to the substrate film. The degree of rigidity and/or flexibility provided can be controlled by selection of the carrier dimensions, configuration and material choice. Advantages of embodiments of the carrier include easier handling, reduced probability of defective end products, and increased control in choosing the thinness of the substrate film. For example, the substrate film carrier can be used for lead-over-chip (LOC) assemblies and lead-under-chip (LUC) assemblies to create ball grid arrays (BGA), pin grid arrays (PGA), dual in-line packages (DIP), and the like.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: May 24, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Brenton L. Dickey
  • Patent number: 6707147
    Abstract: An apparatus and method for adhesively bonding a back surface of a substrate to an active surface of at least one semiconductor die having adhesive tape interposed therebetween. A wetting agent layer is provided on at least one of the back surface of the substrate and the active surface of at least one semiconductor die. The wetting agent layer interacts with an adhesive on the adhesive tape when the substrate is heated so that the substrate is adhesively bonded to at least one semiconductor die. The interaction of the wetting agent layer allows the adhesive tape to bond thereto at a lower temperature than that of the conventional bonding methods, and more importantly, enhances adhesion thereto.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: March 16, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Brenton L. Dickey, Tongbi Jiang
  • Publication number: 20030190769
    Abstract: The invention relates to a carrier for supporting a substrate film during the chip-substrate assembly and bonding process. The carrier provides enhanced rigidity to the substrate film. The degree of rigidity and/or flexibility provided can be controlled by selection of the carrier dimensions, configuration and material choice. Advantages of embodiments of the carrier include easier handling, reduced probability of defective end products, and increased control in choosing the thinness of the substrate film. For example, the substrate film carrier can be used for lead-over-chip (LOC) assemblies and lead-under-chip (LUC) assemblies to create ball grid arrays (BGA), pin grid arrays (PGA), dual in-line packages (DIP), and the like.
    Type: Application
    Filed: June 12, 2003
    Publication date: October 9, 2003
    Inventor: Brenton L. Dickey
  • Patent number: 6589812
    Abstract: An apparatus and method for adhesively bonding a back surface of a substrate to an active surface of at least one semiconductor die having adhesive tape interposed therebetween. A wetting agent layer is provided on at least one of the back surface of the substrate and the active surface of at least one semiconductor die. The wetting agent layer interacts with an adhesive on the adhesive tape when the substrate is heated so that the substrate is adhesively bonded to at least one semiconductor die. The interaction of the wetting agent layer allows the adhesive tape to bond thereto at a lower temperature than that of the conventional bonding methods, and more importantly, enhances adhesion thereto.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Brenton L. Dickey, Tongbi Jiang
  • Publication number: 20030094690
    Abstract: An apparatus and method for adhesively bonding a back surface of a substrate to an active surface of at least one semiconductor die having adhesive tape interposed therebetween. A wetting agent layer is provided on at least one of the back surface of the substrate and the active surface of at least one semiconductor die. The wetting agent layer interacts with an adhesive on the adhesive tape when the substrate is heated so that the substrate is adhesively bonded to at least one semiconductor die. The interaction of the wetting agent layer allows the adhesive tape to bond thereto at a lower temperature than that of the conventional bonding methods, and more importantly, enhances adhesion thereto.
    Type: Application
    Filed: December 30, 2002
    Publication date: May 22, 2003
    Inventors: Brenton L. Dickey, Tongbi Jiang
  • Patent number: 6521980
    Abstract: An integrated circuit package may be formed in part with an encapsulated region. Outflow of the encapsulant across critical electrical elements can be prevented by providing a cavity which collects encapsulant outflow between the region of encapsulation and the region where the critical components are situated. In one embodiment of the present invention, a surface may include a first portion covered by solder resist, having an area populated by bond pads, and a second portion which is encapsulated. Encapsulant flow over the bond pads is prevented by forming an opening in the solder resist proximate to the second portion to collect the encapsulant before it reaches the bond pads.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: February 18, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Patrick W. Tandy, Joseph M. Brand, Brad D. Rumsey, Steven R. Stephenson, David J. Corisis, Todd O. Bolken, Edward A. Schrock, Brenton L. Dickey
  • Patent number: 6501170
    Abstract: An apparatus and method for adhesively bonding a back surface of a substrate to an active surface of at least one semiconductor die having adhesive tape interposed therebetween. A wetting agent layer is provided on at least one of the back surface of the substrate and the active surface of at least one semiconductor die. The wetting agent layer interacts with an adhesive on the adhesive tape when the substrate is heated so that the substrate is adhesively bonded to at least one semiconductor die. The interaction of the wetting agent layer allows the adhesive tape to bond thereto at a lower temperature than that of the conventional bonding methods, and more importantly, enhances adhesion thereto.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: December 31, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Brenton L. Dickey, Tongbi Jiang
  • Publication number: 20020074645
    Abstract: An apparatus and method for adhesively bonding a back surface of a substrate to an active surface of at least one semiconductor die having adhesive tape interposed therebetween. A wetting agent layer is provided on at least one of the back surface of the substrate and the active surface of at least one semiconductor die. The wetting agent layer interacts with an adhesive on the adhesive tape when the substrate is heated so that the substrate is adhesively bonded to at least one semiconductor die. The interaction of the wetting agent layer allows the adhesive tape to bond thereto at a lower temperature than that of the conventional bonding methods, and more importantly, enhances adhesion thereto.
    Type: Application
    Filed: February 21, 2002
    Publication date: June 20, 2002
    Inventors: Brenton L. Dickey, Tongbi Jiang
  • Patent number: 6395579
    Abstract: An integrated circuit package may be formed in part with an encapsulated region. Outflow of the encapsulant across critical electrical elements can be prevented by providing a cavity which collects encapsulant outflow between the region of encapsulation and the region where the critical components are situated. In one embodiment of the present invention, a surface may include a first portion covered by solder resist, having an area populated by bond pads, and a second portion which is encapsulated. Encapsulant flow over the bond pads is prevented by forming an opening in the solder resist proximate to the second portion to collect the encapsulant before it reaches the bond pads.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Patrick W. Tandy, Joseph M. Brand, Brad D. Rumsey, Steven R. Stephenson, David J. Corisis, Todd O. Bolken, Edward A. Schrock, Brenton L. Dickey
  • Publication number: 20020008307
    Abstract: The invention relates to a carrier for supporting a substrate film during the chip-substrate assembly and bonding process. The carrier provides enhanced rigidity to the substrate film. The degree of rigidity and/or flexibility provided can be controlled by selection of the carrier dimensions, configuration and material choice. Advantages of embodiments of the carrier include easier handling, reduced probability of defective end products, and increased control in choosing the thinness of the substrate film. For example, the substrate film carrier can be used for lead-over-chip (LOC) assemblies and lead-under-chip (LUC) assemblies to create ball grid arrays (BGA), pin grid arrays (PGA), dual in-line packages (DIP), and the like.
    Type: Application
    Filed: May 15, 2001
    Publication date: January 24, 2002
    Inventor: Brenton L. Dickey
  • Publication number: 20010008780
    Abstract: An integrated circuit package may be formed in part with an encapsulated region. Outflow of the encapsulant across critical electrical elements can be prevented by providing a cavity which collects encapsulant outflow between the region of encapsulation and the region where the critical components are situated. In one embodiment of the present invention, a surface may include a first portion covered by solder resist, having an area populated by bond pads, and a second portion which is encapsulated. Encapsulant flow over the bond pads is prevented by forming an opening in the solder resist proximate to the second portion to collect the encapsulant before it reaches the bond pads.
    Type: Application
    Filed: February 21, 2001
    Publication date: July 19, 2001
    Inventors: Patrick W. Tandy, Joseph M. Brand, Brad D. Rumsey, Steven R. Stephenson, David J. Corisis, Todd O. Bolken, Edward A. Schrock, Brenton L. Dickey
  • Patent number: 6210992
    Abstract: An integrated circuit package may be formed in part with an encapsulated region. Outflow of the encapsulant across critical electrical elements can be prevented by providing a cavity which collects encapsulant outflow between the region of encapsulation and the region where the critical components are situated. In one embodiment of the present invention, a surface may include a first portion covered by solder resist, having an area populated by bond pads, and a second portion which is encapsulated. Encapsulant flow over the bond pads is prevented by forming an opening in the solder resist proximate to the second portion to collect the encapsulant before it reaches the bond pads.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: April 3, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Patrick W. Tandy, Joseph M. Brand, Brad D. Rumsey, Steven R. Stephenson, David J. Corisis, Todd O. Bolken, Edward A. Schrock, Brenton L. Dickey