Patents by Inventor Bret S. Felton

Bret S. Felton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9168089
    Abstract: A control system for controlling the output of an electrosurgical generator is disclosed. The control system includes a control module configured to receive an optical signal from a surgical site, the optical signal being related to an optical tissue characteristic, the control module configured to process the optical signal using a closed loop control loop and provide continual control of the output of the electrosurgical generator in response to the optical tissue characteristic.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: October 27, 2015
    Assignee: Covidien AG
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
  • Patent number: 9113900
    Abstract: A system for monitoring and/or controlling tissue modification during an electrosurgical procedure is disclosed. The system includes a sensor module and a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module. The sensor module further includes at least one optical source configured to generate light and at least one optical detector configured to analyze a portion of the light transmitted through, and/or reflected from, the tissue.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: August 25, 2015
    Assignee: Covidien AG
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David S. Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
  • Publication number: 20120150170
    Abstract: A system for monitoring and/or controlling tissue modification during an electrosurgical procedure is disclosed. The system includes a sensor module and a control module operatively coupled to the sensor module and configured to control the delivery of electrosurgical energy to tissue based on information provided by the sensor module. The sensor module further includes at least one optical source configured to generate light and at least one optical detector configured to analyze a portion of the light transmitted through, and/or reflected from, the tissue.
    Type: Application
    Filed: January 31, 2012
    Publication date: June 14, 2012
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
  • Publication number: 20120130256
    Abstract: A control system for controlling the output of an electrosurgical generator is disclosed. The control system includes a control module configured to receive an optical signal from a surgical site, the optical signal being related to an optical tissue characteristic, the control module configured to process the optical signal using a closed loop control loop and provide continual control of the output of the electrosurgical generator in response to the optical tissue characteristic.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
  • Patent number: 8105323
    Abstract: An electrosurgical generator is disclosed. The generator includes a microprocessor configured to generate a target impedance trajectory having at least one slope. The target impedance trajectory includes a plurality of target impedance values. The microprocessor is configured to drive tissue impedance along the target impedance trajectory by adjusting the output level to substantially match tissue impedance to a corresponding target impedance value. The microprocessor is further configured to compare tissue impedance to a threshold impedance value and adjust output of the electrosurgical generator when the tissue impedance is equal to or greater than the threshold impedance.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: January 31, 2012
    Assignee: Covidien AG
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Shmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff, Jeremy S. James
  • Patent number: 7137980
    Abstract: A closed-loop control system has a user interface for allowing a user to select at least one pre-surgical parameter. The system also has a sensor module for continually sensing at least one of electrical and physical properties proximate a surgical site and generating at least one signal and a control module for continually receiving the selected parameter from the user interface and the at least one signal from the sensor module. The system processes the signal in accordance with the parameter using at least one of a microprocessor, computer algorithm and a mapping. The control module generates a corresponding control signal relating to the signal from the sensor module, and provides the control signal to the generator. The control module has number of loop control modules with a first loop control module providing a ratio of a real time parameter value to a desired parameter value. The real time parameter value is from the signal from the sensor module.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: November 21, 2006
    Assignee: Sherwood Services AG
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff
  • Publication number: 20040015163
    Abstract: A closed-loop control system is disclosed for use with an electrosurgical generator that generates electrosurgical energy. The closed loop control system includes a user interface for allowing a user to select at least one pre-surgical parameter, such as the type of surgical instrument operatively connected to the generator, the type of tissue and the desired surgical effect. A sensor module is also included for continually sensing at least one of electrical and physical properties proximate a surgical site and generating at least one signal relating thereto. The system also includes a control module for continually receiving the at least one selected pre-surgical parameter from the user interface and each of the signals from the sensor module, and processing each of the signals in accordance with the at least one pre-surgical parameter using at least one of a microprocessor, computer algorithm and a mapping.
    Type: Application
    Filed: May 1, 2003
    Publication date: January 22, 2004
    Inventors: Steven P. Buysse, Bret S. Felton, David N. Heard, David Keppel, Ronald J. Podhajsky, Dale F. Schmaltz, Robert H. Wham, Edward C. Meagher, Kate R. Lawes, David A. Schechter, Chelsea Shields, Philip M. Tetzlaff