Patents by Inventor Brett Alan Terwilliger

Brett Alan Terwilliger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12145293
    Abstract: A method of drying a green ceramic honeycomb body (20) comprising: moving the body (20) through a drying system (50) comprising interconnected microwave devices (60), wherein each microwave device (D1, D2, D3) comprises an entrance (62a, 62b, 62c) located at an upstream end and an exit (64a, 64b, 64c) located at a downstream end of the microwave device (D1, D2, D3), the ends defining a downstream direction (72) and an upstream direction (74) in each of the devices (D1, D2, D3); removing moisture from the body (20) by irradiating the body (20) with microwave radiation within each of the devices (D1, D2, D3); and flowing air against the outer peripheral wall (22) of the body (20) while the body (20) is located in each of the microwave devices (D1, D2, D3).
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: November 19, 2024
    Assignee: Corning Incorporated
    Inventors: Colby William Audinwood, Brett Alan Terwilliger
  • Publication number: 20220203575
    Abstract: A method of drying a green ceramic honeycomb body (20) comprising: moving the body (20) through a drying system (50) comprising interconnected microwave devices (60), wherein each microwave device (D1, D2, D3) comprises an entrance (62a, 62b, 62c) located at an upstream end and an exit (64a, 64b, 64c) located at a downstream end of the microwave device (D1, D2, D3), the ends defining a downstream direction (72) and an upstream direction (74) in each of the devices (D1, D2, D3); removing moisture from the body (20) by irradiating the body (20) with microwave radiation within each of the devices (D1, D2, D3); and flowing air against the outer peripheral wall (22) of the body (20) while the body (20) is located in each of the microwave devices (D1, D2, D3).
    Type: Application
    Filed: April 23, 2020
    Publication date: June 30, 2022
    Inventors: Colby William Audinwood, Brett Alan Terwilliger
  • Patent number: 10247474
    Abstract: Microwave drying of ceramic honeycomb logs using a customizable cover that can take the form of a flexible wrap or a rigid cover is disclosed. The cover can be in the form of a wrap disposed directly in contact with the leading edge of the log surface. The cover can also be a rigid cover disposed adjacent but not in contact with the leading edge of the log surface. At least a portion of the trailing edge of the log can remain uncovered either by having windows in the wrap or by the rigid cover only covering the leading edge of the log surface. The customizable cover can be configured to compensate for log shape deformities as well as or in addition to the adverse effect on log shape cause by the drying differential created by passing a log through a microwave drying station leading-edge first.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: April 2, 2019
    Assignee: Corning Incorporated
    Inventors: Colby William Audinwood, Brett Alan Terwilliger, David Robertson Treacy, Jr., Chauncey James Watches
  • Publication number: 20160054057
    Abstract: Microwave drying of ceramic honeycomb logs using a customizable cover that can take the form of a flexible wrap or a rigid cover is disclosed. The cover can be in the form of a wrap disposed directly in contact with the leading edge of the log surface. The cover can also be a rigid cover disposed adjacent but not in contact with the leading edge of the log surface. At least a portion of the trailing edge of the log can remain uncovered either by having windows in the wrap or by the rigid cover only covering the leading edge of the log surface. The customizable cover can be configured to compensate for log shape deformities as well as or in addition to the adverse effect on log shape cause by the drying differential created by passing a log through a microwave drying station leading-edge first.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Colby William Audinwood, Brett Alan Terwilliger, David Robertson Treacy, JR., Chauncey James Watches
  • Patent number: 9188387
    Abstract: Microwave drying of ceramic honeycomb logs using a customizable cover that can take the form of a flexible wrap or a rigid cover is disclosed. The cover can be in the form of a wrap disposed directly in contact with the leading edge of the log surface. The cover can also be a rigid cover disposed adjacent but not in contact with the leading edge of the log surface. At least a portion of the trailing edge of the log can remain uncovered either by having windows in the wrap or by the rigid cover only covering the leading edge of the log surface. The customizable cover can be configured to compensate for log shape deformities as well as or in addition to the adverse effect on log shape cause by the drying differential created by passing a log through a microwave drying station leading-edge first.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 17, 2015
    Assignee: Corning Incorporated
    Inventors: Colby William Audinwood, Brett Alan Terwilliger, David Robertson Treacy, Jr., Chauncey James Watches
  • Patent number: 8782921
    Abstract: A method of making a honeycomb structure comprises the step of providing a honeycomb body including a first end face and a second end face, wherein the honeycomb body includes a ceramic and/or a ceramic-forming material. The method further includes the step of providing a first non-metallic extension and a second non-metallic extension along a longitudinal axis of the honeycomb body. The first non-metallic extension is positioned with respect to the first end face and the second non-metallic extension is positioned with respect to the second end face. The method further includes the step of exposing the honeycomb body and the non-metallic extensions to microwaves to dry the honeycomb body.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: July 22, 2014
    Assignee: Corning Incorporated
    Inventors: Jesus Humberto Armenta-Pitsakis, Valerie Jean Clark, James Anthony Feldman, Jacob George, Amit Halder, Brett Alan Terwilliger
  • Publication number: 20140000123
    Abstract: A method of making a honeycomb structure comprises the step of providing a honeycomb body including a first end face and a second end face, wherein the honeycomb body includes a ceramic and/or a ceramic-forming material. The method further includes the step of providing a first non-metallic extension and a second non-metallic extension along a longitudinal axis of the honeycomb body. The first non-metallic extension is positioned with respect to the first end face and the second non-metallic extension is positioned with respect to the second end face. The method further includes the step of exposing the honeycomb body and the non-metallic extensions to microwaves to dry the honeycomb body.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Inventors: Jesus Humberto Armenta-Pitsakis, Valerie Jean Clark, James Anthony Feldman, Jacob George, Amit Halder, Brett Alan Terwilliger
  • Publication number: 20130318811
    Abstract: Microwave drying of ceramic honeycomb logs using a customizable cover that can take the form of a flexible wrap or a rigid cover is disclosed. The cover can be in the form of a wrap disposed directly in contact with the leading edge of the log surface. The cover can also be a rigid cover disposed adjacent but not in contact with the leading edge of the log surface. At least a portion of the trailing edge of the log can remain uncovered either by having windows in the wrap or by the rigid cover only covering the leading edge of the log surface. The customizable cover can be configured to compensate for log shape deformities as well as or in addition to the adverse effect on log shape cause by the drying differential created by passing a log through a microwave drying station leading-edge first.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 5, 2013
    Inventors: Colby William Audinwood, Brett Alan Terwilliger, David Robertson Treacy, JR., Chauncey James Watches
  • Patent number: 8299409
    Abstract: A fuzzy logic-based system and method for controlling the drying of material by a microwave applicator. The system includes power output controller that controls applicator output power; material sensor that detects amount of material in the applicator; and fuzzy logic controller that receives a signal from the material sensor indicating the current amount of material in the applicator and adjusts the microwave output power based on the current amount of material in accordance with fuzzy logic rules by sending a control signal to the power output controller. A membership function divides the expected range for the amount of material into multiple regions, each region having precomputed regional output settings. The regional output settings of the regions that include the current amount of material are used to compute the control signal.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: October 30, 2012
    Assignee: Corning Incorporated
    Inventors: Parasuram Padmanabhan Harihara, Brett Alan Terwilliger
  • Publication number: 20100108667
    Abstract: A fuzzy logic-based system and method for controlling the drying of material by a microwave applicator. The system includes power output controller that controls applicator output power; material sensor that detects amount of material in the applicator; and fuzzy logic controller that receives a signal from the material sensor indicating the current amount of material in the applicator and adjusts the microwave output power based on the current amount of material in accordance with fuzzy logic rules by sending a control signal to the power output controller. A membership function divides the expected range for the amount of material into multiple regions, each region having precomputed regional output settings. The regional output settings of the regions that include the current amount of material are used to compute the control signal.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Inventors: Parasuram Padmanabhan Harihara, Brett Alan Terwilliger